
von Karman Institute for Fluid Dynamics
Chaussée de Waterloo, 72

B - 1640 Rhode Saint Genèse - Belgium

Project Report

ADJOINT BASED GOAL ORIENTED ERROR ESTIMATION 
FOR ADAPTIVE PETROV-GALERKIN

FINITE ELEMENT METHODS 

Application to convection-diffusion problems

T. Horváth

Supervisors: H. Deconinck, S. D'Angelo

June 2014





Acknowledgments

First of all I would like to say thank you to my supervisor Herman Deconinck and to
my advisor Stefano D’Angelo for their endless help and support. Professor Deconinck:
thanks for always finding some time for my questions, although, you were busy all year
long; Stefano: thanks for your patience at the beginning when I had to get to the right
level of programming (I know, I am still not good enough) and for your time at the end,
when you were also busy with your thesis.

To my fellows at the study room: thank you for the whole year. Yes, it was difficult,
but there was always a reason to smile. I do not have enough space here to say thank
you one-by-one, but I would like to say thank you for Aude and Matteo for being my
private drivers sometimes and to Nándi for having someone to talk to in Hungarian. Oh,
yes, here I have to mention Lilla, Imre, Tamás and Tamás also, many thanks!

I also would like to say thank you for the VKI community. When I came here,
according to my papers, I was an applied mathematician, but I always thought about
myself as a theoretical mathematician. After this 9 months I can really say that I have
some knowledge about the applied side. Thanks for showing so many interesting topics
- interesting both as a mathematician and as an engineer!

I could not the left out from here the family I lived with. Merci for the whole year!
Especially to the kids, for cheering me up, even when I was in a bad mood due to my
work.

Last but not least, thanks for my family and friends for helping me whenever I missed
being at home.

i



ii



Abstract

Adjoint based goal oriented error estimation will be presented for dissipative problems
using streamline upwind Petrov-Galerkin finite element methods. Goal oriented means
that we are not interested in the global solution but some functional values of it. This
functional could represent the solution at a given point, i.e. pressure at the stagnation
point if we are interested in the flow over an airfoil, or it could be some weighted integrals
of the solution over the domain or over the boundary.

The error estimation process could provide a bound on the error between the func-
tional value of the exact solution and the functional value of the discrete solution. It also
provides some local indicators, using which, it can be determined over which triangles
the error is significant. Using mesh adaptation these triangles could be refined, in order
to increase accuracy.

There are methods which use only the residual of the original problem in order to
identify where the mesh needs to be refined. However, these methods usually refines the
mesh around every ”problematic region”. For example, if we are interested in a point
value of the solution inside the boundary layer, then these methods will refine all over
the boundary layer.

There is another approach, in which the adjoint problem is solved also, and the error
in the target functional is estimated using the residual of the original problem weighted
with the adjoint solution. This leads to a more accurate error representation. In the
previous example during the refinement process only some parts of the boundary layer
will be resolved.

To calculate the error estimation, the adjoint problem has to be solved two times,
even though, it does not increase the computational cost significantly, due to the fact
that the adjoint problem is linear, even if the original one is nonlinear.

Due to the fact, that convection dominated problems will be examined, some sta-
bilized discretisation will be needed. In the current work streamline upwind Petrov-
Galerkin will be used. Some other discretisations could also be applied, such as bub-
ble stabilized methods or Residual Distribution, however, it will be indicated that the
streamline approach provides the best convergence results. It will be proved that the
convergence rate of the Residual Distribution method in the adjoint problem is restricted
to 1/2 for every polynomial degree.

The corresponding theoretical background will be presented, and the results will be
supported by numerical simulations. The starting point of the research will be the linear
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iv Abstract

diffusion-advection-reaction problem. All the basic ideas will be introduced through that
case. After that, the results will be extended to system of equations and to nonlinear
problems. Finally, the theoretical background will be presented for the compressible
Navier-Stokes equations.
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Chapter 1

Introduction

1.1 Goal-oriented adjoint-based error estimation

Error estimation and adaptive solution procedures for CFD computations are of great
importance to reduce the computational cost. In this Research Master project we con-
sidered a goal-oriented (target based) error estimation by not focusing on the global
solution itself, but some functional values of it. To get these values as accurate as po-
ssible an adaptive strategy is provided, by which we solve one additional linear problem
(even if the original problem is nonlinear) and its solution is used to identify where the
mesh refinement is needed.

This kind of error estimation has been used by many authors [21, 17, 44] for differ-
ent discretization techniques, such as classical finite element method [1], discontinuous
Galerkin [24] or streamline upwind Petrov-Galerkin [12] method.

1.2 Aim of the project

The goal of this project was to extend to viscous problems the studies made by Stefano
D’Angelo, [12], who was working on this type of error estimation for inviscid problems.
It has to be emphasized, that by including viscous terms the behaviour is significantly
different from the case when viscous effects are neglected (Euler-equations) and this
changes the type of the partial differential equations as well.

By courtesy of Stefano D’Angelo this kind of error estimation was tested by the code
APOGEE. Originally APOGEE was set to handle inviscid problems and it dealt only
with convective fluxes. In this project APOGEE has been extended to viscous problems
by implementing the viscous flux. Moreover, in order to make the testing more flexible,
reaction fluxes and source terms were also implemented.

Reaction terms were initially used in the linear case, because in FEM the natural
boundary condition is the Neumann one, however, if there are only viscous and convective
fluxes then the problem cannot be equipped with fully Neumann boundary condition,
otherwise the solution will only be unique up to a constant.
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2 Introduction

Source terms were implemented in order to be able to test the code with fabricated
solutions. For example in the case of Navier-Stokes equations analytical solutions are
known only for some very special cases. Using the source terms is was possible to plug
in any function as an exact solution by setting the source term properly.

Our aim is to solve the problem such that the error in whatever sense it is measured
(global error or goal oriented) should be smaller than a user given tolerance, i.e.,

Error < TOL .

A posteriori error estimation aims to bound the error using the coefficient functions of
the PDE and the discrete solution, but not the (unknown) analytical solution. Therefore,
such an error estimate can give information about the error with some error indicators
that provides error estimation, ηK , for every single element K of the mesh, and bounds
the error

Error ≤
∑
K

ηK .

Moreover, using ηK as local indicators an adaptive process can be applied until the
error is small enough. Some elements can be flagged as the error is significant and a
mesh adapting tool can refine these elements. On the refined mesh the problem can be
solved again and the error will decrease. This adaptation strategy can be used up until∑

K

ηK < TOL ,

which is even stronger than the original goal.

As mentioned in the goal oriented error estimation the error is not the global one,
but some functional value of the solution. This functional will be denoted by J(·). In
other words the error that will be estimated is

Error = J(u)− J(uh) ,

where u is the exact solution, while uh is the numerical one.

Such a target functional can represent many functionals of physical interest. For
example in the case of flow around an airfoil it can represent the solution at a given
point, such as pressure at the leading edge, or even some integrals of the solution, such
as lift/drag or moment coefficients.

1.3 Bibliography background

Hartmann in his thesis ([24]) used this method successfully for convection problems.
For example drag and lift coefficients were calculated for NACA0012 airfoil at subsonic
speed, and the pressure at the leading edge was calculated in the supersonic case. In
that work, the discretization method was the Interior Penalty Discontinuous Galerkin
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(IPDG) method. In [12] D’Angelo follows those test cases, but with SUPG and Residual
Distribution discretization.

Hartmann has several chapters in VKI Lecture Series books on this topic also. In
[21], the basic concepts are introduced for linear and nonlinear target functions, for both
Euler and Navier-Stokes equations. The used discretization scheme is again the IPDG
method.

With Houston in [23], they introduced a new approach for multiple target quantities,
which reduces the computational cost in comparison to the standard method. In that
work anisotropic mesh refinement is presented that can be useful for example in the case
of boundary layer problems.

In [22], Hartmann extended his worked also for turbulent flows using RANS-k − ω
method and successfully determine the total drag, lift and pitching moment coefficients
of a VFE-2 delta wing in turbulent flows.

There are other types of Discontinuous Galerkin discretization and Fidkowski in [17]
shows some results on time dependent problems discretized with Bassi-Rebay scheme and
Hybridizable Discontinuous Galerkin methods. In the case of time dependent problems
the adjoint problem is backward in time, from the current time level to the initial one,
therefore the computational costs are quite high.

1.4 Outline

In Chapter 2 the basics of weak form, classical and streamline upwind finite element
methods will be studied through the linear diffusion-convection-reaction problem with
main focus on the convection dominated case. This will serve as a basic model of the
Navier-Stokes equations as this is the easiest problem where boundary layer like solution
can be generated.

Chapter 3 will deal with adjoint based goal oriented error estimation. The continu-
ous adjoint problem and the basic ideas of this type of error estimation process will be
introduced. The error estimation formula will be deduced from which two error estima-
tors can be created and their efficiency can be examined. Also the basic concepts of the
adaptive process will be discussed in this section.

Chapter 4 extends previous chapters to nonlinear problems and systems. The non-
linear problem will be the viscous Burgers’ equation, which has the same nonlinearity
as the Navier-Stokes equations and the linear system will be a coupled one, to establish
the connection to the Navier-Stokes problem.

Chapter 5 is devoted to the governing equations of the 2D compressible Navier-Stokes
problem. The discrete variational formulation will be presented using streamline upwind
Petrov-Galerkin finite element method. Some of the possible target functionals will also
be presented, such as lift/drag coefficients.

Chapter 6 will conclude the achieved result and it will pave the route for possible
continuation of the current research. Finally there are three Appendices that are closing
the report. Appendix A contains some mathematical materials that is required to make
the report self standing, but putting them into the Appendix enables a better presen-
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tation, while Appendix B contains some additional test results. The proof of the main
mathematical result will be presented in Appendix C.



Chapter 2

Streamline upwind finite element
method

2.1 Variational formulation of a linear convection-diffusion-
reaction equation

Let us consider a bounded open domain Ω ⊂ R2 and denote by Γ = ∂Ω its boundary.
The linear convection-diffusion-reaction equation has the following form

−ε4u+∇ · (bu) + cu = f in Ω, (2.1)

u = gD on ΓD, (2.2)

ε∇u · n = gN on ΓN , (2.3)

where ΓD and ΓN are the Dirichlet and Neumann parts of the boundary, respectively.
They have the following properties: ΓD ∪ΓN = Γ and ΓD ∩ΓN = ∅. The parameter ε is
a small positive quantity throughout this work, b ∈ R2 denotes a solenoidal advection
field, n denotes the outward normal vector of Ω and the data f ∈ L2(Ω), gN ∈ L2(ΓN ),
gD ∈ H1/2(ΓD) are given functions.

Classical solution of problem (2.1)-(2.3) is a function u ∈ C2(Ω)∩C(Ω) that satisfies
the differential equation pointwise, where Ω is the closure of Ω. However, there are several
physical phenomena for which there is no C2 solution, therefore the weak solution needs
to be used.

To work with the weak form and the weak solution we have to introduce the function
space H1(Ω). This function space contains functions that are square integrable and all
of their derivatives are also square integrable, i.e.,

H1(Ω) := {u : u ∈ L2(Ω),∇u ∈ [L2(Ω)]2} ,

For more details on the used function spaces see Appendix A.1.

To get to the weak solution, the variational formulation has to be set up. There are
two ways to do this. One is to multiply equation (2.1) by a test function v and use

5



6 Introduction

Green Theorem in the second order term, while the other is to rewrite the second order
term into a first order system. The second approach will be used here. There are also
two ways of handling the first order term: leave it as it is, [13, 8], or use Green Theorem
twice and distinguish the inflow and outflow boundary [21]. In the current work the
first approach will be used. Therefore, to simplify the notations as long as the boundary
conditions are handled properly, the analysis is restricted to the case of the pure second
order problem. In other words, suppose that b = 0, c = 0, ε = 1 and the remaining
Poisson equation can be rewritten as a first order equation as follows

σ = ∇u, −∇ · σ = f in Ω, u = gD on ΓD, ∇u · n = gN on ΓN .

The first is multiplied by test function φ and the second by test function v. After
this, an integration over Ω and a partial integration is applied. Thus∫

Ω
σ · φ dx = −

∫
Ω
u∇ · φ dx +

∫
Γ
un · φ ds ,∫

Ω
σ · ∇v dx =

∫
Ω
fv dx +

∫
Γ
σ · nv ds .

To go the discrete level we denote the approximate counterparts of all functions using
the subscript h. ∫

Ω
σh · φh dx = −

∫
Ω
uh∇ · φh dx +

∫
Γ
ûhn · φh ds , (2.4)∫

Ω
σh · ∇vh dx =

∫
Ω
fvh dx +

∫
Γ
σ̂h · nvh ds , (2.5)

where ûh and σ̂h are the numerical flux functions, approximating u and ∇u, respectively.
Naturally, on ΓD we have ûh = gD and on ΓN we have σ̂h · n = gN . Applying partial
integration on equation 2.4 and setting φh = ∇vh∫

Ω
σh · ∇vh dx =

∫
Ω
∇uh · ∇vh dx−

∫
Γ
∇vh · n(uh − ûh) ds. (2.6)

Using the fact that the right hand sides of (2.5) and (2.6) are the same and using
the boundary conditions (2.2)-(2.3)∫

Ω
∇uh · ∇vh dx =

∫
Ω
fvh dx

+

∫
ΓD

∇vh · n(uh − gD) +

∫
ΓD

∇uh · nvh ds+

∫
ΓN

gNvh ds .

Remark 2.1. Naturally, the complete equation (2.1) can be rewritten as a first order
system, but in that case the formulas are quite complicated.

To sum up, the weak solution reads as follows.
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Problem Set 2.2. Seek u ∈ H1(Ω) such that ∀v ∈ H1(Ω)

B0(u, v) = F0(v),

where

B0(u, v) =ε

∫
Ω
∇u · ∇v dx +

∫
Ω
∇ · (bu)v dx +

∫
Ω
cuv dx

−
∫

ΓD

uε∇v · n ds−
∫

ΓD

ε∇u · nv ds , (2.7)

F0(v) =

∫
Ω
fv dx−

∫
ΓD

gDε∇v · n ds+

∫
ΓN

gNv ds . (2.8)

However, if we want to impose the boundary conditions weakly, then according to
Nitche ([36]) we have to modify artificially the Dirichlet boundary condition. This has
to be replaced by an artificial Robin condition

u = gD on ΓD =⇒ u+ α−1ε∇u · n = gD on ΓD ,

where α is a parameter. If we want to insert this into the weak form we can use the fact
that ε∇u · n = α(gD − u). Using this we have∫

ΓD

ε∇uv · n ds =

∫
ΓD

α(gD − u)v .

For more details on weakly imposing the Dirichlet boundary condition see Appendix A.3
With this the bilinear and linear form can be reformulated, and the final problem

can be set.

Problem Set 2.3. Seek u ∈ H1(Ω) such that ∀v ∈ H1(Ω)

B(u, v) = F (v),

where

B(u, v) =ε

∫
Ω
∇u · ∇v dx +

∫
Ω
∇ · (bu)v dx +

∫
Ω
cuv dx

−
∫

ΓD

uε∇v · n ds−
∫

ΓD

ε∇u · nv ds+ α

∫
ΓD

uv ds , (2.9)

F (v) =

∫
Ω
fv dx−

∫
ΓD

gDε∇v · n ds+

∫
ΓN

gNv ds+ α

∫
ΓD

gDv ds . (2.10)

Remark 2.4. Throughout the following section we always use the above definition of
B(·, ·) and F (·). The method was implemented into APOGEE through Problem Set 2.3.

Definition 2.5. Suppose that the bilinear form is defined over V × V and the linear
form is defined over V . Let us denote by |||·||| a norm on V .
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• The bilinear form is continuous on V × V , if there exists Cc > 0 such that
B(u, v) ≤ Cc |||u||| |||v|||, ∀u, v ∈ V .

• The bilinear form is coercive on V ×V , if there exists Cs > 0 such that Bu, u) ≥
Cs |||u|||2, ∀u ∈ V .

• The linear form is continuous on V , if there exists Cl > 0 such that F (u) ≤
Cl |||u|||, ∀u ∈ V .

It can be found in many FEM textbooks that these properties hold for the bilinear
and linear forms ((2.7) and (2.8)). To prove the existence and uniqueness of the weak
solution the Lax-Milgram Lemma is required.

Theorem 2.6 (Lax-Milgram Lemma). Let H be real Hilbert space, B : H ×H → R is
a bounded, coercive bilinear form. For all bounded linear functionals, F : H → R there
exist a unique u ∈ H such that F (v) = B(u, v) for all v ∈ H.

To the model problem this lemma can be used by setting H = H1(Ω) and using the
bilinear and linear forms (2.7) and (2.8), respectively.

2.2 Finite element method

The above defined problem cannot be handled numerically, because H1(Ω) is infinite
dimensional. To construct a numerical method we should reduce it to a finite dimensional
problem. The simplest way is to define a finite dimensional subspace Vh,p ⊂ H1(Ω) and

Problem Set 2.7. {
Seek uh,p ∈ Vh,p such that

B(uh,p, vh,p) = F (vh,p) ∀vh,p ∈ Vh,p.

B(·, ·) and F (·) inherit boundedness and coercivity from H1(Ω) to Vh,p hence the
existence and uniqueness can be proved similarly as we did in the case of Problem Set
2.3.

When we want to impose the Dirichlet boundary conditions weakly the stabilizing
constant α has to be large, because its inverse produces the artificial Robin condition,
and this has to be small, and usually α ∈ O(k2/h) is a proper choice, where p is the
polynomial degree, h is the mesh size. For more details on this see Appendix A.3.

We shall define a suitable finite dimensional space Vh,p. First of all we have to decom-
pose the domain Ω into elements: typically triangles in two dimensions and tetrahedrons
in three dimensions. In some cases other elements are also included: quadrilaterals,
cubes or prisms. In this work we will consider only one and two dimensional examples,
therefore three dimensional meshes will not be examined.

The set of the elements will be denoted by Th = {Ki, i = 1, . . . , Nel}, where ∪iKi = Ω,
and intKi ∩ intKj = ∅ whenever i 6= j. We have an extra restriction: two neighbouring
elements should share a common edge. This means that hanging nodes are excluded.
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On the left side of Figure 2.1 the mesh satisfies this, however, in the middle there is a
hanging node. Hanging nodes are such nodes that lie on an edge of the neighbouring
triangle (∂E ∩ ∂F is not an edge of E). The meshes without hanging node are called
regular, otherwise n-irregular, where n is the maximum number of the hanging nodes
over an edge. In the middle of Figure 2.1 there is a 1-irregular mesh while in the right
hand side there is a 2-irregular. However, in the discontinuous Galerkin framework,
which is used in i.e. [21, 17] hanging nodes can be implemented without any difficulties.
This becomes an enormous advantage when dealing with adaptive mesh refinement.

E
F

Figure 2.1: Left: regular mesh, middle: 1-irregular mesh, right: 2-irregular mesh.

In the case of standard finite element techniques the irregular meshes are excluded.
However, there are some papers on irregular meshes, see e.g. [42].

The space Vh,p contains continuous piecewise polynomials of degree p over the ele-
ments. Let us denote by Φ1, . . . ,ΦN a basis of Vh,p. Using these notations we seek uh,p
as

uh,p =
N∑
i=1

ciΦi.

Due to the bilinearity of B(·, ·) the equation in Problem Set 2.7 has to be satisfied
only for the basis functions, leading to a system of linear equations.

We will consider only the case of Lagrange basis functions (sometimes called Lagrange
elements). Such a function is associated with a point in the mesh, not necessarily a mesh
node.

For example Vh,1 contains piecewise linear functions. Let us denote by xi an interior
node and let us introduce the basis function Φi as follows: Φi(xj) = δi,j (δi,j is the
Kronecker-delta). This property and the linearity of Φi determine the function. The
support of Φi will be the union of those mesh elements that have xi as a node. The
function Φi will be referred to as the basis function associated to the mesh node xi.

Higher order spaces can be constructed similarly, although, the basis functions are
associated not only to the nodes, but to the edges and to the elements. That is Vh,2
contains piecewise quadratic functions, and the basis functions will belong to the nodes
of Th (nodal functions) or to the midpoint of the edges (edge functions) while in Vh,3 we
have piecewise cubic functions, and the basis functions will belong either to the nodes
of Th (nodal functions) or to the edges (edge functions) or to the element itself (bubble
functions). Usually the bubble functions are chosen such that they belong to some
interior points, see Figure 2.2.
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In Figure 2.2 there are the DOF points over Ω0 for polynomial degree one, two and
three. The nodes are denoted by • the corresponding functions are the nodal functions.
The functions that are belonging to the points on the edges (denoted by ◦) are the edge
functions. Finally, there are the bubble functions: these functions are associated with
the element, although it is convenient to define point(s) inside the element (denoted by
×) and set the functions to be equal to 1 at a given interior point (and 0 at the others).

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

Figure 2.2: DOF for Lagrange basis functions for p = 1, 2, 3.

The set of the points that are associated with basis functions will be denoted by
DOF and it is called degree of freedom. If first degree polynomials are used then DOF
equals the set of the mesh nodes, in the case of second degree polynomials it is enriched
with the edge midpoints, etc.

Later we will omit the subscript p for simplicity. Most of the time the value of p will
not be important, otherwise it will be clear from the contest which polynomial degree
will be used.

If the mesh contains only triangles/tetrahedrons (or parallelograms/parallelepipeds)
it is very comfortable to define the basis functions over a reference element due to the
fact that the above elements can be transformed into each other by using an affine linear
mapping. We will discuss the case of triangles. For some comments on different meshes
see Chapter 6

The main benefits of using the reference domain approach is clearly the relatively low
computational costs of assembling the linear system. The values of the basis functions
and the values of the gradients can be computed on Ω0 instead of the physical element
and using the affine linear mapping we can compute the values at the quadrature points
on the physical element. Moreover, we can compute the values on the reference domain
and store it. For more details on reference domain calculations see [20].

Let us introduce the triangle Ω0 with nodes (0, 0), (1, 0) and (0, 1). This will be called
a reference triangle. Let us take an element E ∈ Th, this will be called a physical element,
with nodes (x1, y1), (x2, y2) and (x3, y3), see Figure 2.3. The affine linear mapping JE :
Ω0 → E will be an important tool to define the basis functions. It maps nodes to nodes,
more precisely it maps (0, 0) to (x1, y1), (1, 0) to (x2, y2) and finally (0, 1) to (x3, y3).
Hence the mapping is defined by(

x
y

)
= JE(ξ, η) =

(
(x2 − x1)ξ + (x3 − x1)η + x1

(y2 − y1)ξ + (y3 − y1)η + y1

)
, (2.11)



Introduction 11

and the Jacobian JE is given by

JE =

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
.

ξ

η

Ω0

(0, 0) (1, 0)

(0, 1)

E(x1, y1)

(x2, y2)

(x2, y2)

y

x

JE

Figure 2.3: The reference element Ω0, the physical element E and the mapping
JE .

Let us denote the basis functions defined over Ω0 by ΦΩ0
i (while ΦE

i denotes the basis

functions over E). The following formula establishes the relation between ΦE
i and ΦΩ0

i

ΦΩ0
i = ΦE

i ◦ JE .

Remark 2.8. We note that the determinant of JE can easily be computed: | det(JE)| =
2|E|, where |E| is the area of E, namely

|E| =
∫
E
dΩ =

∫
Ω0

|det(JE)| dΩ0 = | det(JE)|
∫

Ω0

dΩ0 =
|det(JE)|

2

using the integral transform.

With these notations the basis functions for Vh,1 over Ω0 are:

• ΦΩ0
1 (ξ, η) = 1− ξ − η,

• ΦΩ0
2 (ξ, η) = ξ,

• ΦΩ0
3 (ξ, η) = η.

Throughout this work only polynomial degree p = 1, 2, 3 will be used. Naturally,
higher order polynomial can be defined over the reference and the physical domain, see
i.e. [43].
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2.3 Convection dominated problem

The model equation (2.1) is called convection dominated if |b| � ε. It can be shown
that the classical Galerkin method has stability issues in convection dominated problems.
This basically means that the stability of the bilinear form holds, but the corresponding
stabilisation constant is small, and its reciprocal plays an important role in the conver-
gence proof of the finite element method. For more details see [16] and Remark A.16 in
Appendix A.

Let us consider the one dimensional problem

−εu′′ − u′ = 0 , on (0, 1) (2.12)

u(0) = 1, u(1) = 0 , (2.13)

where ε as before is a small positive constant,
The analytical solution is

u(x) =
exp(−x/ε)− exp(−1/ε)

1− exp(−1/ε)
.

It is well known that the solution has a boundary layer type behaviour at x = 0
which means that as ε→ 0 the solution converge to u(x) = 0 on (0, 1] with u(0) = 1 and
there is a narrow region with huge derivatives. If ε = 0 than we have only convection
that goes from right to left, because the convection speed is −1, and the solution would
be the constant zero. Naturally, in this case we can have only one condition. However,
as soon as ε > 0 we have a boundary value problem and the solution has to satisfy
u(0) = 1 also, that is the reason of the boundary layer region.

The result with classical Galerkin can be seen in Figure 2.4. It is clear that the
solution oscillates in the boundary layer region.

To overcome this we can introduce the so-called stabilising term

ST (u, vh) =
∑
K

∫
K

(−ε4u+∇ · (bu) + cu− f)(τb · (∇vh)) ,

and modify the bilinear form by B̃ST (u, vh) = B(u, vh) + ST (u, vh). Naturally, the
contribution

∑
K

∫
K f(τb · (∇vh)) can be added to the right hand side functional. The

result of this method, the Streamline Diffusion Finite Element Method (SDFEM), can
also be seen in Figure 2.4. We can conclude that the wiggles around the boundary layer
have disappeared.

We can reformulate Problem Set 2.7, by introducing the Petrov-Galerkin function

ṽh := vh + τb · ∇vh. (2.14)

Several terms can be put together using ṽh, but not the second order term. Unfor-
tunately ∫

K
−ε4u(τb · (∇vh))−

∫
K
ε∇u∇(τb · (∇vh)) 6= 0 ,
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Figure 2.4: Classical and Streamline diffusion FEM solution compared to the exact
solution 2.3 of the test equation (2.12)-(2.13) with ε = 0.02. Dotted line: exact
solution, solid line: classical FEM, dashed line: SDFEM.

because there is a nonzero contribution on the boundary. However, if first degree polyno-
mials are used in the discretisation, then τb·(∇vh) is a constant, therefore its derivatives
are null. In this case we can fully replace v and use only ṽh. If we use higher order dis-
cretisation then we loose this property. Although, in Theorem 2.12 it will be shown that
this simplification can be used, the only consequence is that the convergence order will
not increase with the polynomial degree. For more possibilities see Chapter 6.

With these notations we can reformulate the stabilised problem, and we get the
following: we seek the discrete solution uh ∈ Vh such that B(uh, ṽh) = F (ṽh) holds for
all ṽh ∈ Ṽh, where the bilinear and the linear forms are the same as in (2.9) and (2.10),
respectively.

This approach leads us to the Streamline Upwind Petrov-Galerkin discretisation.
Petrov-Galerkin discretisation means that the test and trial function are taken from two
different spaces. In the classical Galerkin approach they are taken from the same space
and they are continuous, in the discontinuous Galerkin approach they can be taken from
two different spaces (not necessarily) but they are both discontinuous. The Petrov-
Galerkin method is somehow in between of the two approaches. The test functions are
taken from the continuous space Vh, however, the trial functions taken from Ṽh are not
continuous. The functions from this latter space can be characterised by (2.14).

Remark 2.9. Due to the fact that ṽh can not be exactly integrated into the bilinear form
in many papers this method is called Streamline Diffusion Finite Element Method. For
the first order problems there is no such a problem, and in this case the method is called
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Streamline Upwind Petrov-Galerkin Finite Element Method. Throughout this work we
will use the two names as synonyms, as out first main goal for the future is to build ṽh
properly into the bilinear form.

Remark 2.10. On the boundary the terms that contains v are coming from a partial
integration in which we use the approximation ∇ṽ ≈ ∇v, therefore we use the approxi-
mation ṽ ≈ v on the boundary also.

There are several other stabilized FEM such as Residual Distribution-Low Diffusion
A or Bubble stabilised method. They are compared in [12] and the result was that for
the current work SUPG provides better convergence rates. The reason for this will be
presented in Section 3.4.

2.3.1 On the choice of τ

It is important to note that in the case of diffusion-advection problems that there is an
upper bound on the constant τ , that appears in (2.14). This bound ensures that the
bilinear form is coercive, therefore there is convergence of uh,p to u. For more details on
the bound and the coercivity see Appendix A.2.

In addition let us introduce the cell Peclet number

Peh =
|b|h
2ε

,

where h is the local mesh size. With this, the parameter τ can be redefined as

τ =
h

2|b|ζ(Peh) .

To have stability and convergence for convection-diffusion problems; τ has to satisfy
two asymptotic behaviours

τ = O

(
h

|b|

)
as Peh →∞ , (inviscid limit) (2.15)

τ = O

(
h2

ε

)
as Peh → 0 . (diffusion limit) (2.16)

This implies that we have two constrains on ζ

ζ(Peh)→ 1 as Peh →∞ ,

ζ ≈ Peh as Peh → 0 .

There are several possible choices on ζ, see Appendix A.2.2, but throughout this
work we will concentrate on the so-called doubly asymptotic expression which is

ζ(Peh) = min{1, P eh/3} .
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2.3.2 Convergence of the method

Theorem 2.11. Suppose that u ∈ Hp+1(Ω) and we solve the discrete problem with
polynomials of degree p. In that case

‖u− uh‖L2(Ω) ≤ Chp+1/2|u|Hp+1(Ω)

As mentioned earlier we can simplify the calculations by neglecting the Laplacian
in the stabilizing term. If we use first degree polynomials in the discretisation, the
Laplacian of the numerical solution is zero, therefore, this approximation is exact in
that case. If higher degree polynomials are used the higher order convergence is lost due
to this approximation, as illustrated in Figure 2.5.

Theorem 2.12. Suppose that u ∈ Hp+1(Ω) and we solve the discrete problem with
polynomials of degree p, but we neglect the Laplacian in the stabilisation. In that case

‖u− uh‖L2(Ω) ≤ Ch3/2|u|Hp+1(Ω)

Remark 2.13. If the mesh and the equation is not too complicated then numerically the
convergence rate is p+1, instead of p+1/2. This can be seen in Table 2.1 and on Figure
2.5. In the case of neglected Laplacian the convergence curves for p = 2 and p = 3 are
indistinguishable.
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Figure 2.5: Left: convergence rates when the Laplacian is taken into account in the
stabilisation term, right: convergence rates when the Laplacian is not taken into
account. Solid line: p = 1, dashed line: p = 2, dotted line: p = 3. Test equation
(2.12)-(2.13) with ε = 0.02.
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p With Laplacian Without Laplacian

1 1.907 1.907

2 3.042 1.960

3 4.118 1.976

Table 2.1: Convergence rates in 1D. Test equation (2.12)-(2.13) with ε = 0.02.

2.4 Testing with APOGEE

The main goal of this Research Master project is to implement diffusion terms into the
APOGEE code and due to the fact that this code is two dimensional we start with the
quasi two dimensional extension of the above mentioned problem. The domain is the
unit square, and in the y direction the boundary conditions are homogeneous Neumann.

More precisely the test case is

−ε4u− ∂xu− ∂yu = 0 in (0, 1)2 (2.17)

u(0, y) = 1, u(1, y) = 0 (2.18)

ε∂yu|y=0 = ε∂yu|y=1 = 0 (2.19)

This means that the advection field is b = (−1,−1)T . The analytical solution is the
simple extension of the previous one

u(x, y) =
exp(−x/ε)− exp(−1/ε)

1− exp(−1/ε)
.

Table 2.2 contains the results provided by APOGEE code. For the second order
elements (p = 2) the diffusion term is not included in the stabilisation, therefore the
convergence rate becomes similar to the p = 1 case. This is consistent with Theorem
2.12, and the convergence rate is between 1.5 and 2.

p h ‖u− uh‖L2(Ω) rate p h ‖u− uh‖L2(Ω) rate

1 0.0625 0.101042362350649 2 0.0625 0.144612469664143
1 0.03125 0.059918204383782 0.75 2 0.03125 0.094061948349598 0.62
1 0.015625 0.019869457064809 1.59 2 0.015625 0.034532105780752 1.44
1 0.0078125 0.005360349677730 1.89 2 0.0078125 0.009807051552617 1.81

Table 2.2: Convergence rates for the 2D boundary layer equation. Test equation
(2.17) - (2.19), ε = 0.01.



Chapter 3

Adjoint-based goal oriented a
posteriori error estimation

3.1 Error estimation of finite element methods

Basically there are two different ways for error estimation of finite element methods: a
priori and a posteriori. The a priori estimation is done analytically without doing any
calculations. These error estimations were presented in the Section 2.3.2, they provide
the convergence results. The big difference between a priori and a posteriori is that the
a posteriori is done after the solution of the discrete problem and bounds the error, the
difference between the exact (analytical) solution and the discrete solution, using only
the data that are at hand, but not the exact solution u.

3.1.1 A posteriori error estimation

The construction of accurate a-posteriori error estimators for the finite element solution
of PDE’s is of great importance. Besides providing a reliable stopping criterion for the
successive refinements, a-posteriori error estimation also gives a solid basis for adaptive
finite element algorithms [15], [41]. From this point of view, local a-posteriori error
estimates are of particular importance. For a general overview on a-posteriori error
estimators we refer to [1, 16, 37, 46].

The starting point of many error estimation techniques is the residual-based a-
posteriori error estimator, which provides an explicit formula for the error. The original
idea in [4] has been generalized for several types of equations, such as advection-diffusion
[47], convection-diffusion-reaction [48] and Maxwell equations [40]. Accordingly, explicit
error estimators have been provided for nonconforming finite element methods [2] and
uniform approaches have been developed [9]. Moreover, the estimation methodology can
be extended for nonlinear problems, see, e.g. [10] and [30].

For the implicit a-posteriori error estimators Neumann type problems are formulated
locally using the numerical solution at hand, and these are solved in certain local finite
element spaces. In the simplest case, the boundary conditions for the local problems

17
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have been constructed with a simple averaging on element interfaces, however, there
are some extensions ([25]) where the boundary conditions are achieved via a gradient
averaging based method. To enforce the well-posedness of the local problems or enhance
the quality of the estimators special equilibrated fluxes were defined and analysed ([5],
[34]) using the results for the residual-based explicit error estimators. Though it seems
to be an involved approach, it pays off to compute an accurate error estimator which
provides local error bounds and is sensitive to the shape of the subdomain or to the
mesh geometry. Implicit a-posteriori error estimators have been applied and analysed
for elliptic boundary value problems (see an overview in [1]) and generalized for time-
harmonic Maxwell equations [29].

Another approach is given by the functional type a-posteriori error estimates. These
can provide both an upper and a lower bound for the exact error and are free of unknown
constants (depending on the mesh geometry or interpolation inequalities). Usually, these
estimates are independent of the numerical technique used to obtain approximate solu-
tions, and they can be extended to nonlinear problems as well [33].

This approach is also important in CFD simulations. The functionals can describe
the point value of the solution at a given point, or alternatively an integral over a
boundary or over the domain. For example the lift/drag or moment coefficient can be
described as an integral over the airfoil.

3.2 Adjoint problem

Suppose that we have to deal with the following problem

Lu = f in Ω Bu = g on Γ (3.1)

where L denotes a linear differential operator in Ω and B denotes a boundary operator
on Γ = ∂Ω.

For the model problem (2.1) - (2.3) we have

Lu = −ε4u+∇ · (bu) + cu ,

B|ΓD
u = B1u = u ,

B|ΓN
u = B2u = εn · ∇u .

Using the work of Hartmann [21], we formalize the target function as

J(u) = (jΩ, u)Ω + (jΓ, Cu)Γ , (3.2)

where jΩ ∈ L2(Ω), jΓ ∈ L2(Γ), (·, ·)T is the inner product on L2(T ) for arbitrary
domain/boundary T , i.e., (u, v)T =

∫
T uv dT , C is a differential operator defined over Γ,

which for the model problem (2.1) - (2.3) are given by

C|ΓD
u = C1u = εn · ∇u ,

C|ΓN
u = C2u = u .
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We say that the target functional (3.2) is compatible with primal problem (3.1) if
there are operators L∗, B∗, C∗, such that

(Lu, z)Ω + (Bu,C∗z)Γ = (u, L∗z)Ω + (Cu,B∗z)Γ . (3.3)

The operators L∗, B∗ and C∗ are the adjoint operators of L, B and C, respectively.
Moreover, assuming that (3.3) holds the adjoint problem associated to (3.3) and (3.2) is
given by

L∗z = jΩ in Ω B∗z = jΓ on Γ . (3.4)

By applying partial integration to the left hand side of (3.3) we can identify the
operators L∗, B∗ and C∗, giving for the model problem (2.1) - (2.3)

L∗u = −ε4u−∇ · (bu) + cu ,

B∗|ΓD
u = B∗1u = −u ,

B∗|ΓN
u = B∗2u = εn · ∇u ,

C∗|ΓD
u = C∗1u = −εn · ∇u ,

C∗|ΓN
u = C∗2u = u .

For the readers’ convenience we will work this out for the Laplace case. To do that,
suppose that b = 0, c = 0, ε = 1, and suppose that the problem is subject to full
Dirichlet boundary conditions. In that case, we multiply Lu by z, integrate on Ω and
apply Green’s Theorem twice

(Lu, z)Ω = −
∫

Ω
4uz dx =

∫
Ω
∇u · ∇z dx−

∫
Γ
z∇u · n ds

= −
∫

Ω
u4z dx−

∫
Γ
z∇u · n ds+

∫
Γ
u∇z · n ds

= (u, L∗z)Ω + (Cu,B∗z)Γ − (Bu,C∗z)Γ .

Remark 3.1. It is important to examine the behaviour of the different terms. First of
all, it has to be emphasized that the convective term has changed sign. It means that
in the adjoint problem the convection acts in the opposite direction. If pure convection
problems are examined it means that the inlet and outlet boundaries are swapped. The
viscous term stays as it was, which physically means that the viscous effects have the
same behaviour in both problems (in other words, the Laplace operator is self adjoint).

Suppose that the primal problem (3.1) is discretized by the method described in
Chapter 2 and the discrete problem is given by

B(uh, ṽh) = F (ṽh) ∀ṽh ∈ Ṽh , (3.5)

where B(·, ·), F (·), Vh and Ṽh are described in Chapter 2. The problem is said to be
consistent if the equality (3.5) holds for the exact solution u also, or in other worlds

B(u, ṽh) = F (ṽh) ∀ṽh ∈ Ṽh . (3.6)

The dual (adjoint) discrete problem reads as follows.



20 Adjoint-based goal oriented a posteriori error estimation

Problem Set 3.2. Seek zh ∈ Ṽh such that for all wh ∈ Vh the following holds

B∗(zh, wh) ≡ B(wh, zh) = J(wh) ∀wh ∈ Vh , (3.7)

where the bilinear form B(·, ·) is the same as for the primal problem. The bilinear form
B∗(·, ·) is the so-called adjoint bilinear form.

Using the above notations, the discretisation is said to be adjoint consistent if the
exact solution z ∈ V of the dual problem satisfies 3.7, i.e.

B(wh, z) = J(wh) ∀wh ∈ Vh .

Therefore, adjoint consistency means that the discretisation of the dual problem is
a consistent discretisation of the continuous adjoint problem.

3.2.1 Linear target quantities

In the following we give an overview of the main linear target functionals that can be
found in the literature.

Weighted average functional: using a volume weight function jΩ ∈ L2(Ω) and
jΓ = 0, the weighted average of the solution can be calculated by

J(u) =

∫
Ω
jΩu dx .

The corresponding continuous adjoint problem has jΩ as a source and zero as
boundary condition on both the Dirichlet and the Neumann parts.

Boundary flux functional: using a boundary weight function jΓ ∈ L2(Γ) and
jΩ = 0, the weighted average of the viscous flux on a Dirichlet boundary can be
computed by

J(u) =

∫
ΓD

jΓε∇u · n ds .

The corresponding continuous adjoint problem has zero source and Neumann
boundary condition, however, on the Dirichlet part the boundary condition is −jΓ.
Naturally, the weight function can be zero at some part of the Dirichlet boundary,
if only some part of it is of interest.

Boundary value functional: using a boundary weight function jΓ ∈ L2(Γ)
and jΩ = 0, the weighted value of the solution on a Neumann boundary can be
computed by

J(u) =

∫
ΓN

jΓu ds .
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The corresponding continuous adjoint problem has zero source and Dirichlet bound-
ary condition, however, on the Neumann part the boundary condition is jΓ. Sim-
ilarly as above, the weight function can be zero at some part of the Neumann
boundary, if only some part of it is of interest.

Point value functional: we assume a continuous solution u at a given point x0,
and we set jΩ = δx0 and jΓ = 0, where δx0 is the Dirac delta at the given point.
With this, the solution at x0 can be set as a target quantity

J(u) =

∫
Ω
jΩu dx = u(x0).

The corresponding continuous adjoint problem has δx0 as a source and zero bound-
ary condition on both the Dirichlet and the Neumann parts.

Remark 3.3. The weak adjoint solution, provided by the last example, does not supply
a regular distribution, because of the Dirac delta, furthermore, z does not belong to any
Sobolev space, and not even to L2(Ω). To overcome this [1] suggests to use a mollified
functional, by considering a nonnegative function ψx0 ∈ L1(Ω) with a ball support around
x0, and with the restriction that the integral of ψx0 over this ball is 1. Then the target
functional is given by

J(u) =

∫
Ω
ψx0u dx .

Naturally, for viscous problems it is an interesting question to use this approach for
x0 that lies in the boundary layer. Some results of this will be shown later.

3.3 A posteriori error estimation for target functionals

The consistency (3.6) has a very important consequence, the so-called Galerkin ortho-
gonality

B(u− uh, ṽh) = 0 ∀ṽh ∈ Ṽh .

The goal oriented error estimation is based on the following equalities (see [44])

J(u)− J(uh) = J(u− uh) (linearity)

= B(u− uh, z) (adjoint)

= B(u− uh, z − zh) (Galerkin orthogonality)

= F (z − zh)−B(uh, z − zh) (consistency)

= R(uh, z − zh) , (residual)

where R(uh, z − zh) = F (z − zh)−B(uh, z − zh) is called the residual.
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Taking the absolute value and using the triangle inequality

|J(u)− J(uh)| = |R(uh, z − zh)|

=

∣∣∣∣∣∣
∑
κ∈Th

ηκ

∣∣∣∣∣∣ ≤
∑
κ∈Th

|ηκ|,

where ηκ is the elementwise residual. For later purposes let us introduce the following
notations

|RΩ| =

∣∣∣∣∣∣
∑
κ∈Th

ηκ

∣∣∣∣∣∣ , R|Ω| =
∑
κ∈Th

|ηκ| .

Therefore |RΩ| is the absolute value of the error and R|Ω| is the upper bound. We
can define the efficiency of these estimators as

θ1 =
|RΩ|

|J(u)− J(uh)| and θ2 =
R|Ω|

|J(u)− J(uh)| ,

hence optimal efficiency corresponds to θ1 = θ2 = 1.
To get some approximation of the term z − zh the dual problem is solved in an

enriched space to get z2
h, and z − zh ≈ z2

h − zh. This is called Type I estimation ([44]).
This enriched space in the present work is Vh,p+1, i.e., the mesh is unchanged but the
polynomial degree is increased by one. Another possible choice for the enriched space
can be Vh/2,p, which means that a uniform refinement is applied to the mesh, but the
polynomial degree is not changed.

Let us decompose the error representing formula

|J(u)− J(uh)| = |R(uh, z − zh)| ≤ |R(uh, z
2
h − zh)|+ |R(uh, z − z2

h)|
≤ R|Ω| + |R(uh, z − z2

h)| .

It has been shown in many papers, see i.e. [6], that the second term is negligible with
respect to the first.

Type II estimation avoids computation of z, i.e. the residual R(uh, z−zh) is bounded
from above by terms that contain only the numerical solution uh. However, this approach
uses some constants in the upper bound and in most cases the order of these constants
are not known. Indeed, Cauchy-Schwarz inequality ηκ can be bounded as

ηκ ≤ ‖R(uh)‖κ‖z − zh‖κ .

If z ∈ Hk(Ω) for some k then we can bound ‖z−zh‖ ≤ C‖z‖Hk(Ω). Finally, assuming
that ‖z‖Hk(Ω) ≤ Cstab we can get rid of the adjoint solution and only the primal solution
uh appears in the upper bound. There are several drawbacks of this approach: first of
all, the constants that appear in the estimation are unknown, as it was mention earlier.
Moreover, this bound is independent of the target quantity, therefore it will reveal the
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error of the primal problem everywhere over the domain, not only at the parts where it
is relevant for the given target quantity. Therefore, the bound is quite pessimistic and
we get extreme over-estimations.

For this estimator we will introduce the following short notation and efficiency

R = R(uh, z − zh) and θ =
R

|J(u)− J(uh)| .

These methods have been applied to several physical phenomena but in combination
with discretisation techniques that are different from streamline diffusion finite element
method, [21, 23, 17, 44].

Remark 3.4. Throughout this work the primal problem will be solved by first degree
polynomials and the adjoint problem will be solved once with first degree and once with
second degree polynomials.

Theorem 3.5. Suppose that the discretisation is consistent, the bilinear and the linear
forms have the properties from Definition 2.5. Suppose that jΩ, jΓ are smooth functions
and the adjoint solution is also smooth (z ∈ Hk+1(Ω)). Then the following results hold:

1. If the discretisation together with the target functional J(·) is adjoint consistent,
then there is a constant C > 0 such that

|J(u)− J(uh)| ≤ Chr+r̄|u|Hp+1(Ω)|z|Hp+1(Ω) ∀u ∈ Hp+1(Ω) .

2. If the discretisation is adjoint inconsistent, then

|J(u)− J(uh)| ≤ Chr|u|Hp+1(Ω) ∀u ∈ Hp+1(Ω) .

Proof. 1. If both the primal and the adjoint problems are consistent then we can use
the equality J(u) − J(uh) = B(u − uh, z − zh). Taking the absolute value, using
the continuity of the bilinear form and using the convergence results we get

|J(u)− J(uh)| = |B(u− uh, z − zh)|
≤ Cc |||u− uh||| |||z − zh|||
≤ Chr|u|Hp+1(Ω)h

r̄|z|Hp+1(Ω)

= hr+r̄|u|Hp+1(Ω)|z|Hp+1(Ω) .

2. If the adjoint problem is inconsistent then a mesh dependent adjoint problem can
be defined by Bh(w, φ) = J(w), ∀w ∈ Vh. We cannot expect any smoothness
on this φ, however, we can define Phφ as the projection of w to the space Vh.
Combining this projection with Galerkin orthogonality we have

J(u)− J(uh) = J(u− uh) (linearity)

= B(u− uh, w) (adjoint)

= B(u− uh, w − Phw) . (Galerkin orthogonality)
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As in the first part of the proof, taking the absolute value, using the continuity of
the bilinear form and using the convergence results (only on u− uh) we get

|J(u)− J(uh)| = |B(u− uh, w − Phw)|
≤ Cc |||u− uh||| |||w − Phw|||
≤ Chr|u|Hp+1(Ω) |||w − Phw|||
= C ′hr|u|Hp+1(Ω) .

Due to the lack of adjoint consistency we cannot gain an extra rate of convergence
on w − Phw.

The connection between the primal/dual continuous/discrete problems can be sum-
marized in Figure 3.1.
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compatibility
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Figure 3.1: Connection between the different problems. First letter: P - primal, A
- adjoint, second letter: C - continuous, D - discrete.

3.4 Comparison of different stabilised methods

It will be shown that SUPG provides better convergence rates for the target based error
estimation than Residual Distribution-Low Diffusion A (RD-LDA) or Bubble stabilised
method (BUBBLE).

Let us recall the definition of the RD-LDA and BUBBLE test functions, according
to [12]. For the simplicity we will denote the streamline upwind stabilized test functions
by ṽSU .

RD-LDA
This technique has a long history at VKI, see i.e. [38, 14]. The test functions are

defined as

ṽRDA = α
k+∑
l k

+
l

, k = Ladvv , k+ = max{k, 0} , , (3.8)



Adjoint-based goal oriented a posteriori error estimation 25

where α is a parameter, Ladv is the advection part of the differential operator, v are the
standard FEM basis functions and the summation goes over all the basis functions that
are corresponding to the same physical element.

BUBBLE
Bubble function schemes have since long been developed as an alternative of Galerkin

Least Square-stabilized finite element methods for stabilizing the numerical solution
provided by the Galerkin method [7, 18]. The test functions are defined as

ṽB = v + αb(x)

(
k+∑
l k

+
l

− v
)
,

where we used the notations of (3.8), furthermore, b(x) is a bubble function on the
corresponding element, which means that b(x) = 0 on the boundary of the element, for
example b(x) =

∏3
i=1 vi(x).

In Appendix C.1 it will be shown, that it is impossible to interpolate any noncon-
stant polynomial with the RD basis function exactly, therefore the convergence rate of
the interpolation in the L2 norm is at most 1. An interpolation will be shown for the
streamline upwind functional using which every polynomials of degree p−1 can be inter-
polated exactly, therefore it will be shown, that the convergence rate of the interpolation
in the L2 norm is at least p, however, numerically p+ 1 could be achieved, which means
that there is some space for further investigation.

3.5 Adaptation

Suppose that we want to guarantee that the error is smaller than a given tolerance TOL.
To achieve this a simple algorithm can be applied:

1. construct the initial mesh and FEM space Vh,

2. compute the solution uh ∈ Vh
3. solve the adjoint problems to get zh, z

2
h,

4. compute the error indicators (ηκ),

5. check if the error is small enough, i.e. stop if
∑ |ηκ| ≤ TOL

6. otherwise refine the mesh where it is needed according to ηκ, and create the new
mesh and the new FEM space and GOTO 2.

Let us recall the possible refinement strategies

Local tolerance criterion
Suppose that the mesh contains N element and mark for refinement the element for

which the following holds

|ηκ| ≥
TOL

N
.
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However, in adaptive mesh refinement algorithms some coarsening is required to
avoid the too fast growth of the number of element. This means, that where the error is
small the mesh size can be enlarged. In the current framework it means that triangles
for which

|ηκ| ≤ θ
TOL

N

are marked for coarsening. The parameter θ is user defined, 0 < θ � 1.

Fixed fraction criterion
Another way of refining and coarsening is the so-called fixed fraction criterion. In this

method we sort the elements according to |ηκ| and refine the upper Nr% of the elements
and coarsen the lower Nc% of the elements. In the following a similar method will be
used, but instead of sorting the local error element-wisely, a point-wise characteristic
size ηp will be defined and the nodes of the mesh will be sorted and flagged for the new
mesh.

Remeshing
Naturally a completely new mesh can be generated, using the local error indicator as

some kind of mesh density requirement. This approach can be used for 2D problems but
for 3D problems its computational costs are too high. Even in 2D it has an enormous
drawback: using the interpolation of the old solution from the old mesh to the new mesh
requires a significant amount of computation.

3.6 Numerical examples

First of all let us examine the test case that is quite similar to (2.17) - (2.19) but it is
subject to fully Dirichlet boundary condition

−0.014u− ∂xu− ∂yu = 0 in (0, 1)2 (3.9)

u = g on ∂(0, 1)2 (3.10)

where g is set such that the exact solution is

u(x, y) =
exp(−x/ε)− exp(−1/ε)

1− exp(−1/ε)
.

The target functional is the point value of the solution inside the boundary layer,
at x0 = (0.01, 0.5) and we apply the mollified functional used in the last example from
3.2.1. More precisely:

J(u) =

∫
Ω
ψx0u dx = 0.367879441171442 .

Table 3.1 and 3.2 contain the result. The final meshes can be seen in Figure 3.2. From
this we can conclude that the residual based adaptation resolves the whole boundary
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layer, while, the adjoint based approach refines only on a smaller region, namely in the
vicinity of x0. The isolines of the exact primal solution and the adjoint solution can be
found in Figure 3.3. The support of the adjoint solution is basically the characteristic
that goes through x0. Mathematically characteristics are existing only on the inviscid
limit, but the weak viscosity does not influence the point value so strongly and some trace
of the characteristics can be seen in the adjoint solution. For pure convection problem
it would be only a peak along the characteristic, but for the convection-diffusion case it
is smeared in the transversal direction. The smearing increases as the distance to the
target point x0 increases.

NT NLS |J(u)− J(uh)| |RΩ| θ1 R|Ω| θ2

385 704 4.895 · 10−1 3.509 · 100 7.17 6.440 · 100 13.16
466 845 3.888 · 10−1 7.669 · 10−1 1.97 8.763 · 10−1 2.25
564 1024 1.873 · 10−1 1.506 · 100 8.04 1.552 · 100 8.29
670 1220 5.688 · 10−2 1.911 · 10−1 3.36 2.224 · 10−1 3.91
842 1534 1.958 · 10−2 1.190 · 10−1 6.08 1.267 · 10−1 6.47

1032 1883 9.397 · 10−3 8.926 · 10−2 9.50 9.340 · 10−2 9.94
1189 2175 7.175 · 10−3 8.358 · 10−2 11.65 8.594 · 10−2 11.98
1393 2553 6.265 · 10−3 8.346 · 10−2 13.32 8.514 · 10−2 13.59
1592 2936 5.739 · 10−3 8.244 · 10−2 14.36 8.354 · 10−2 14.56
1826 3398 5.139 · 10−3 8.103 · 10−2 15.77 8.194 · 10−2 15.95

Table 3.1: Type I (adjoint based) estimation for point value (x0 = 0.01, 0.5) in the
boundary layer. Test equation (3.9) - (3.10)

NT NLS |J(u)− J(uh)| R θ

385 704 4.895 · 10−1 3.466 · 100 7.08
448 809 3.879 · 10−1 2.635 · 100 6.79
551 985 2.314 · 10−1 2.028 · 100 8.77
659 1178 1.843 · 10−1 1.896 · 100 10.29
814 1438 7.166 · 10−2 1.886 · 100 26.32
967 1736 5.154 · 10−2 1.860 · 100 36.09

1232 2195 2.887 · 10−2 1.866 · 100 64.62
1520 2714 2.626 · 10−2 1.869 · 100 71.17
1936 3538 1.663 · 10−2 1.854 · 100 111.45
2539 4678 1.398 · 10−2 1.848 · 100 132.21

Table 3.2: Type II (residual based) estimation for point value (x0 = 0.01, 0.5) in
the boundary layer. Test equation (3.9) - (3.10).

For further results see Appendix B.1.
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Figure 3.2: Meshes for linear boundary layer point value. Left: adjoint based
refined mesh with 1826 triangles (3398 unknowns) |J(u) − J(uh)| = 5.139 · 10−3,
right: residual based refined mesh with 2539 triangles (4678 unknowns) |J(u) −
J(uh)| = 1.398 · 10−2.
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Figure 3.3: Left: adjoint solution, right: exact primal solution both for the bound-
ary layer point value example.



Chapter 4

Generalisation to systems and
nonlinear problems

In the previous Chapters only linear scalar problems and linear target functionals have
been studied. However, the future aim of the project is to apply the error estimation
for the compressible Navier-Stokes equations, which is a nonlinear coupled system and
some of the possible target quantities are also nonlinear.

In this chapter the intermediate steps will be made. First we will extend our work
to systems, then we study the nonlinear problems in general. The system case will be
examined with a coupled system. The nonlinear scalar case will be illustrated with
the viscous Burgers’ equation because it has the same nonlinearity as the Navier-Stokes
equations.

First we will reformulate the linear problem to introduce the notations for the more
general problems.

4.1 Generalisation to scalar conversation laws

Let us rewrite (2.1) into the following form

−∇ · Fv(u,∇u) +∇ · Fc(u) + Fr(u) = S(u), (4.1)

with Fv(u,∇u) = ε∇u the viscous flux, Fc(u) = bu the convection flux, Fr(u) = cu
the reaction flux and S(u) = f the source. In (2.1) S and Fv do not depend on u.

Using these notation the weak form can be represented as

Problem Set 4.1. Seek uh ∈ Vh such that ∀ṽh ∈ Ṽh

Nh(uh, ṽh) = 0, (4.2)

29
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where

Nh(u, v) =

∫
Ω
∇ṽ · Fv(u,∇u) dx +

∫
Ω
ṽ (∇ · Fc(u) + Fr(u)) dx−

∫
Ω
ṽS(u) dx

−
∫

ΓN

vgN ds−
∫

ΓD

vFv(u,∇u) ds−
∫

ΓD

(u− gD)
[
(Fv)′(v,∇v) + αv

]
ds .

For later purposes let us generalise this as

Nh(u, v) =

∫
Ω
∇ṽ · Fv(u,∇u) dx +

∫
Ω
ṽ (∇ · Fc(u) + Fr(u)) dx−

∫
Ω
ṽS(u) dx

−
∫

Γ
vuN (u) ds−

∫
Γ
(u− uD(u))

[
(Fv)′(v,∇v) + αv

]
ds , (4.3)

where

uN (u) =

{
gN on ΓN

Fv(u,∇u) on ΓD
, uD(u) =

{
u on ΓN

gN on ΓD
.

4.2 System of equations

Let us consider the following example, where the assumptions on the coefficient functions
are similar to what we have for (2.1), but now every function is vector valued and we
suppose that the coordinate functions are belonging to the proper spaces. The equations
in Ω ⊂ R2 are

−ε4u1 −
1

2
∂xu2 + ∂yu1 + c1u1 = f1 (4.4)

−ε4u2 −
1

2
∂xu1 + ∂yu2 + c2u2 = f2 (4.5)

subject to the following boundary conditions

u1 = g1
D u2 = g2

D on ΓD , (4.6)

ε∇u1 · n = g1
N ε∇u2 · n = g2

D on ΓN . (4.7)

Using the vector u = [u1, u2]T this can be rewritten in the flux formulation (4.1).
The viscous and convective fluxes are

Fv(u,∇u) =

[
ε∇u1

ε∇u2

]
,Fc(u) = f c1(u)1x + f c2(u)1y , f

c
1(u) =

[
−1

2u2

−1
2u1

]
, f c2(u) =

[
u1

u2

]
,

where 1x and 1y are the unit vectors in the x and y dierctions, while the reaction flux
and the source are

Fr(u) =

[
c1u1

c2u2

]
, S(u) =

[
f1

f2

]
.
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In the APOGEE code systems are handled a little bit differently than in many FEM
approaches, due to the fact, that APOGEE handles also the RD-LDA discretisation, in
which the test functions are matrices. Therefore all test functions are stored as matrices
in the code, naturally standard FEM functions are diagonal matrices. Suppose that we
are working with a system of q equations, in this case v ∈ Rq×q and vi,j = δi,j , where
δi,j sands for the Kronecker delta, and the corresponding coefficient is not a scalar, but a
vector with q component. Therefore, the operator Nh is vector valued, and its derivative,
which will be important for the nonlinear case, is matrix valued.

Streamline Upwind or Streamline Diffusion stabilization means that the vector valued
FEM test function is modified. Its gradient is multiplied with the convection speed and
this added to the test function with some weight τ

ṽ = v + τ(Fc)′[u](∇v) ∀v ∈ V q
h ,

where V q
h contains the FEM basis functions with q coordinate functions, where q is

the number of equations. Basically this means, that all coordinate functions vi ∈ Vh.
Similarly, Ṽ q

h denotes the corresponding SUPG space. Finally, (Fc)′[u] is the Frechet
derivative of the convective flux. The Frechet derivative will be defined precisely later,
for this concrete example it is the JAcobian of the convective flux, linearised around the
a state u

(Fc)′x[u] =

[
0 −1/2
−1/2 0

]
, (Fc)′y[u] =

[
1 0
0 1

]
.

Again, some details on the choice τ can be found in Appendix A.2.2.

4.2.1 Numerical results

Let us consider the system (4.4)-(4.5) on Ω = (0, 1)2 subject to full Dirichlet boundary
condition. In the reaction flux c1 = c2 = 1, the source term and the boundary conditions
are set such that the exact solution is given by

u =

 exp(−x/ε)− exp(−1/ε)

1− exp(−1/ε)
sin(2πx) sin(2πy)

 .
The components of the exact solution can be seen in Figure 4.2.
The target functional is the point value of the solution inside the boundary layer.

So we chose x0 = (0.01, 0.5) and applied the mollified version of the last example from
3.2.1, as in Section 3.6.

J(u) =

∫
Ω
ψx0u1 dx = 0.367879441171442 .

The corresponding table that contain the results with adaptive refinements are Table
4.1 and Table 4.2 for Type I and Type II estimation, respectively.
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The final meshes can be seen in Figure 4.1. From this it can be seen that Type II
resolves the whole boundary layer and some of the volleys and hills of the sinus from
the second component, however, Type I resolves only some part of this and the error is
even smaller.

NLS NT |J(u)− J(uh)| |RΩ| θ1 R|Ω| θ2

1473 2816 2.955 · 10−1 1.316 · 100 4.45 2.125 · 100 7.19
1717 3268 1.006 · 10−1 1.501 · 10−1 1.49 2.101 · 10−1 2.09
2147 4072 1.961 · 10−2 2.200 · 10−1 11.22 3.111 · 10−1 15.87
2642 4998 2.241 · 10−3 2.440 · 10−1 108.87 2.664 · 10−1 118.86
3158 5982 2.510 · 10−3 2.578 · 10−1 102.72 2.779 · 10−1 110.75
3658 6955 1.862 · 10−3 2.640 · 10−1 141.80 2.876 · 10−1 154.48
4185 7946 1.719 · 10−3 2.651 · 10−1 154.26 2.878 · 10−1 167.43
4736 9028 1.604 · 10−3 2.659 · 10−1 165.73 2.906 · 10−1 181.16
5469 10474 1.553 · 10−3 2.715 · 10−1 174.79 3.066 · 10−1 197.39

Table 4.1: Type I (adjoint based) estimation for the system boundary layer point
value target functional. Test equation (4.4) - (4.4), ε = 0.01.

NT NLS |J(u)− J(uh)| R θ

1473 2816 2.955 · 10−1 2.710 · 100 9.17
1716 3261 1.057 · 10−1 2.156 · 100 20.40
2125 4007 1.894 · 10−2 1.997 · 100 105.42
2755 5231 2.163 · 10−2 1.966 · 100 90.89
3617 6903 3.128 · 10−2 1.978 · 100 63.24
4690 9004 3.248 · 10−2 1.982 · 100 61.04
6170 11929 1.598 · 10−2 1.966 · 100 122.99
8139 15822 1.356 · 10−2 1.955 · 100 144.26

10758 21009 1.949 · 10−3 1.955 · 100 1002.89

Table 4.2: Type II (residual based) estimation for the system boundary layer point
value target functional. Test equation (4.4) - (4.4), ε = 0.01.



Generalisation to systems and nonlinear problems 33

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 4.1: Meshes for the system boundary layer point value target functional.
Left: adjoint based refined mesh with 5469 triangles (10474 unknowns) |J(u) −
J(uh)| = 1.553 · 10−3, right: residual based refined mesh with 10758 triangles
(21009 unknowns) |J(u)− J(uh)| = 1.949 · 10−3.

4.3 Nonlinear scalar problem

Let us next consider the following problem

−ε4u+∇ ·
(
u2

2
, u

)T
+ cu = f in Ω, (4.8)

u = gD on ΓD, (4.9)

ε∇u · n = gN on ΓN , (4.10)

where we used the notations from Section 2.1. Due to the fact, that in Chapter 2 the
FEM discretisation was developed without touching the convective term and in 4.8 the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.2: Exact solutions of the system case, left u1, right u2.
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nonlinearity appears only in the convection term, the weak form and the finite element
discretisation can be formulated similarly as in Chapter 2.

Problem Set 4.2. Seek uh ∈ Vh such that B(uh, ṽh) = F (ṽh) holds ∀ṽh ∈ Ṽh.

However, as it was mentioned in the previous Section it is more convenient to define
the form Nh(u, v) and seek uh ∈ Vh such that Nh(uh, ṽh) = 0 holds ∀ṽh ∈ Ṽh. In this
case Nh(uh, ṽh) = B(uh, ṽh)− F (ṽh).

Using the flux notation Fc(u) = (u2/2, u)T and the modified FEM functions are

ṽ = v + τ(Fc)′[u](∇v) , (4.11)

where (Fc)′[u] = (u, 1)T . Therefore, the function ṽ = v + τ (u∂xv + ∂yv) depends on u
which will be important later.

The resulting nonlinear problem can be solved by Newton iteration. This means that
a sequence of iterative solutions ukh is produced by the following scheme. Suppose that
we have an initial solution u0

h and the solutions u1
h, . . . , u

k
h are already generated. In that

case

uk+1
h = ukh + ωk4ukh ,

where 4ukh is the solution of

N ′h[ukh](4ukh, ṽh) = Rh(ukh, ṽh) ∀ṽ ∈ Ṽ , (4.12)

where Rh(·, ·) is the nonlinear residual Rh(u, ṽ) = −Nh(u, ṽ).
The Frechet derivative is denoted by ′ while the symbol [·] denotes around which

state the linearisation is performed. Finally, ωk denotes the damping factor that can
change between steps.

From numerical functional analysis it is well known, that for the Newton iteration we
have to compute the Frechet derivative, therefore we suppose that it exists. If it exists, it
is the same as the Gateaux derivative, that can be computed more easily. Basically the
Gateaux derivative is the directional derivative of u → Nh(u, ṽ) in the direction w for
a fixed ṽ ∈ Ṽ 1. The Frechet derivative is an operator, thereforeit is more convenient to
write out the formula when it is applied to a function. In general, the Frechet derivative
of Nh(·, ·) applied to w is given by

N ′h[uh](wh, ṽh) = lim
t→0

Nh(uh + tw, ṽh(uh + tw))−Nh(uh, ṽh)

t
.

We have to compute the derivative of (4.3). Let us illustrate the procedure by
computing the derivative of the reaction flux applied to a function w

(Fr)′[u](w) = lim
t→0

Fr(uh + tw)−Fr(uh)

t

= lim
t→0

c(uh + tw)− cuh
t

= lim
t→0

ctw

t
= cw .

1Naturally, as we have seen in (4.11) ṽ depends on u, therefore it cannot be fixed. However, we
have to emphasize the ṽ was just a convenient notation. If we keep the original decomposition ṽ =
v + τ(Fc)′[u](∇v) then we can say that v is fixed.
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However, in the SUPG framework the test functions ṽ also depends on u, and this
complicates the notations. The Frechet derivative of the whole problem is given by

N ′h[uh](wh, ṽh) =

∫
Ω
∇ṽh · (Fv)′[uh](wh,∇w̃h) dx +

∫
Ω
ṽh∇ · (Fc)′[uh](w̃h) dx

+

∫
Ω
ṽh(Fr)′[uh](wh) dx +

∫
Ω
ṽ′h∇ · Fc(wh) dx

+

∫
Ω
ṽ′hFr(wh) dx +N ′h,Γ[uh](wh, ṽh) , (4.13)

where N ′h,Γ[uh](wh, ṽh) is the prime of the boundary terms but for the readers’ conve-
nience we will not list it here. Again, we use the simplification that ∇ṽ ≈ ∇v.

4.4 Error representing formula in the nonlinear case

Let us consider the abstract problem, when we have a (possibly nonlinear) differential
operator N in Ω and a boundary operator B on the boundary (could also be nonlinear)
and for generality suppose that we have a system of equations

N(u) = 0 in Ω , B(u) = 0 on Γ . (4.14)

Suppose that the target function can be represented similarly as in 3.2

J(u) =

∫
Ω
jΩ(u) dx +

∫
Γ
jΓ(Cu) ds ,

with Frechet derivative

J ′[u](w) =

∫
Ω
j′Ω[u]w dx +

∫
Γ
j′Γ[Cu]C ′[u]w ds .

For nonlinear problems the compatibility condition is a bit more complicated than
(3.3)

(N ′[u]w, z)Ω + (B′[u]w, (C ′[u])∗z)Γ = (w, (N ′[u])∗z)Ω + (C ′[u]w, (B′[u])∗z)Γ , (4.15)

where (N ′[u])∗, (B′[u])∗ and (C ′[u])∗ are the adjoint operators of N ′[u], B′[u] and C ′[u],
respectively. With these, we can formalize the continuous adjoint (dual) problem as

(N ′[u])∗z = j′Ω[u] in Ω , (B′[u])z = j′Γ[Cu] on Γ .

Let us denote by Nh the numerical discretisation of (4.14). At this point, it is not
mandatory to think about SUPG discretisation. Therefore, we seek uh ∈ V q

h such that

Nh(uh, ṽh) = 0 ∀ṽh ∈ Ṽ q
h . (4.16)
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Just as before, it is called consistent if replacing uh by u the equality (4.16) still holds,
i.e.

Nh(u, ṽh) = 0 ∀ṽh ∈ Ṽ q
h . (4.17)

Subtracting (4.17) from (4.16) we can conclude the nonlinear version of the Galerkin
orthogonality

Nh(u, ṽh)−Nh(uh, ṽh) = 0 ∀ṽh ∈ Ṽ q
h .

Let us denote by Mh(u,uh; ·, ·) the mean value linearisation of Nh(·, ·)

Mh(u,uh; u− uh, ṽ) = Nh(u, ṽ)−Nh(uh, ṽ)

=

∫ 1

0
N ′h[su + (1− s)uh](u− uh, ṽ) ds ,

for all ṽ ∈ Ṽ q. From numerical functional analysis we know that the derivative does not
necessarily exist, however, in the following we assume that is exists and it is well defined.
Furthermore, let us introduce the mean value linearisation of the target functional

J̄(u,uh; u− uh) = J(u)− J(uh)

=

∫ 1

0
J ′[su + (1− s)uh](u− uh) ds ,

Using the nonlinear compatibility condition (4.15) we can introduce the linearised
continuous adjoint problem

Mh(w, z̃) = J̄(w) ∀w ∈ V , (4.18)

where for the simplicity of the notations we omitted the states, around which the mean
value linearisations are taken.

Using these notation we can derive the error representing formula for the nonlinear
case, similarly as we did for the linear case in Section 3.3.

J(u)− J(uh) = J̄(u− uh) (mean value of J)

=Mh(u− uh, z̃) (adjoint problem)

=Mh(u− uh, z̃− z̃h) (Galerkin orthogonality)

= Nh(u, z̃− z̃h)−Nh(uh, z̃− z̃h) (mean value of Nh)

= −Nh(uh, z̃− z̃h) . (primal problem)

The error representing formula depends on the unknown analytical solution z̃ of
(4.18) and the mean value linarisations are taken at around the unknown analytical
solution of the primal problem, namely u. Numerically, the linearisations are taken
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around uh and the adjoint solution z̃ is replaced by the solution z̃h to the following
problem

Nh[uh](wh, z̃h) = J ′[uh](w) ∀wh ∈ V q
h . (4.19)

To finalise we have to notice that R(uh, z̃− z̃h) = −Nh(uh, z̃− z̃h) therefore we get
back the weighted residual using which we can continue as in Section 3.3 and we can
built up the two kind of error estimations, Type I and Type II.

Remark 4.3. It is important to note, that for Type I we have to solve (4.19) twice,
which seem to be computationally costly, however, (4.19) is a linear problem, therefore
the solution of this is computationally not as expensive as the solution of the original
problem (4.16).

Remark 4.4. Comparing (4.12) and (4.19) we can see that the prime of the nonlinear
operator, see (4.2), appears twice, but there is a significant difference between the two
appearances. In (4.12) it is used only for the Newton iteration, and it is well known,
that convergence can be achieved even if the derivative is not exact, of course it has to be
close to the exact derivative in some sense. This is the so-called quasi-Newton iteration.
However, in (4.19) the derivative appears as an important tool for the error estimation,
therefore if it is just approximated, then the results can be very poor.

4.5 Numerical results

Let us start from the 1D version of (4.8)-(4.10) with neither reaction flux nor source
term

−εu′′ +
(
u2

2

)′
= 0 in (0, 1) ,

u(0) = 0, u(1) = −1 .

This problem has a unique solution [39], namely u(x) = −2ενε tanh(νεx), where νε is
the solution of the nonlinear algebraic equation

2νε tanh(νε) = 1 .

Therefore in the 2D case if we set full Dirichlet boundary condition over the boundary
and neither reaction flux nor source, and set gD to be equal to u(x, y) = −2ενε tanh(νεx)
on the boundary, then we get

−ε4u+∇ ·
(
u2

2
, u

)T
= 0 in (0, 1)2, (4.20)

u = gD on ∂(0, 1)2, (4.21)

This solution has a boundary layer like behaviour at x = 0, similarly to the linear
diffusion-advection test case that we had in Section 3.6. As ε→ 0 the solution converge
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to u(x, y) = −1 on (0, 1]× [0, 1] with u(0, y) = 0 and there is a narrow region with huge
derivatives.

Let us set as target quantity the weighted integral of the viscous flux at x = 0, with
the weight function ψ that is nonzero only for y ∈ [0.5, 1]. This function can be seen in
Figure 4.3 and its analytical expression is

ψ(x, y) =


exp

(
4− 1

256
1

((y−5/8)2−1/32)2

)
if y ∈ [0.5, 0.625]

1 if y ∈ [0.625, 0.875]

exp
(

4− 1
256

1
((y−7/8)2−1/32)2

)
if y ∈ [0.875, 1]

(4.22)
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Figure 4.3: Bubble function ψ as the boundary weight function.

Therefore, the target can be formalised es

J(u) =

∫
Γ0

ψε∇u · n ds = 0.174596734771569 ,

where Γ0 stand for the boundary x = 0.
The results can be seen in Tables 4.3 and 4.4 and the final meshes in Figure 4.4,

while the isolines of the exact primal solution and the adjoint solution can be found in
Figure 4.5. Again, we can conclude that the adjoint based approach refines only where
it is needed, in the vicinity of the support of ψ, however, the residual based resolves the
whole boundary layer.
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NT NLS |J(u)− J(uh)| |RΩ| θ1 R|Ω| θ2

1473 2816 6.026 · 10−2 4.096 · 10−2 0.68 1.561 · 100 25.90
1685 3219 2.078 · 10−2 6.449 · 10−2 3.10 1.791 · 100 86.22
2009 3840 6.034 · 10−3 2.857 · 10−2 4.73 2.157 · 100 357.51
2507 4783 2.022 · 10−3 1.778 · 10−2 8.79 2.297 · 100 1135.88
3097 5852 1.281 · 10−3 5.418 · 10−4 0.42 1.969 · 100 1537.36
3578 6796 1.155 · 10−3 6.149 · 10−3 5.32 1.999 · 100 1730.85
4094 7825 1.162 · 10−3 6.332 · 10−3 5.45 2.001 · 100 1721.79
4468 8568 1.074 · 10−3 6.088 · 10−3 5.67 2.002 · 100 1863.39
4686 9002 1.022 · 10−3 5.815 · 10−3 5.69 2.010 · 100 1966.83

Table 4.3: Type I (adjoint based) estimation for boundary viscous flux for the
viscous Burgers’ equations. Test equation (4.20) - (4.21), ε = 0.01.

NT NLS |J(u)− J(uh)| R θ

1473 2816 6.026 · 10−2 1.132 · 100 18.78
1679 3191 2.046 · 10−2 9.873 · 10−1 48.26
2099 3978 8.572 · 10−3 9.727 · 10−1 113.47
2605 4963 4.625 · 10−3 9.558 · 10−1 206.67
3329 6401 3.948 · 10−3 9.565 · 10−1 242.27
4209 8123 2.974 · 10−3 9.538 · 10−1 320.75
5383 10402 2.037 · 10−3 9.499 · 10−1 466.40
6821 13247 1.601 · 10−3 9.487 · 10−1 592.65
8077 15747 1.261 · 10−3 9.485 · 10−1 752.15

Table 4.4: Type II (residual based) estimation for boundary viscous flux for the
viscous Burgers’ equations. Test equation (4.20) - (4.21), ε = 0.01.
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Figure 4.4: Meshes for Burgers’ boundary viscous flux. Left: adjoint based refined
mesh with 4686 triangles (9002 unknowns) |J(u) − J(uh)| = 1.022 · 10−3, right:
residual based refined mesh with 8077 triangles (15747 unknowns) |J(u)−J(uh)| =
1.261 · 10−3.
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Figure 4.5: Left: adjoint solution, right: exact primal solution both for the Burgers’
boundary flux value example.



Chapter 5

The compressible Navier-Stokes
equations

In this chapter we will formalize the compressible Navier-Stokes equations in 2D. We
will focus on the viscous term and refer to [12] (or Appendix A.4) for details on the
convective fluxes. The studies of the previous chapters such as nonlinearity and coupled
problems will both appear.

From hereafter we will use the Einstein convention, which means that a subscript
that appears twice will mean a summation.

5.1 The governing equations

The stationary case of the 2D compressible Navier-Stokes problem is given by

∇ · (Fc(u)−Fv(u,∇u)) ≡ ∂

∂xk
f ck(u)− ∂

∂xk
fvk (u,∇u) = 0 in Ω . (5.1)

The vector u denotes the vector of the conservative variables u = [ρ, ρv1, ρv2, ρE]T .
The convective (Euler) fluxes are described in Appendix A.4, the viscous fluxes fv1 and
fv2 are defined by

fv1 (u,∇u) =


0
τ11

τ21

τ1jvj +KTx1

 and fv2 (u,∇u) =


0
τ12

τ22

τ2jvj +KTx2

 ,
where K is the thermal conductivity coefficient. The viscous stress tensor is defined by

τ = µ

(
∇v + (∇v)T − 2

3
(∇ · v)I

)
,

41
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where µ is the dynamic viscosity, I is the 2×2 unit matrix, and the temperature is given
by e = cvT ; thus

KT =
µγ

Pr

(
E − 1

2
v2

)
,

where γ = cp/cv the ratio of specific heat capacities at constant pressure, cp, and constant
volume, cv, Pr = 0.72 is the Prandtl number, v = (v1, v2), v2 = v2

1 + v2
2.

For the discretisation let us rewrite (5.1) into the following (equivalent) form

∂

∂xk

(
f ck(u)−Gkl(u)

∂u

∂xl

)
= 0 in Ω .

Here Gkl(u) = ∂fvk (u,∇u)/∂uxl for k = 1, 2 are the homogeneity tensors defined by
fvk (u,∇u) = Gkl(u)∂u/∂xl, k = 1, 2, where

G11 =
µ

ρ


0 0 0 0
−4

3v1
4
3 0 0

−v2 0 1 0
−
(

4
3v

2
1 + v2

2 + γ
Pr (E − v2)

) (
4
3 −

γ
Pr

)
v1

(
1− γ

Pr

)
v2

γ
Pr

 ,

G12 =
µ

ρ


0 0 0 0

2
3v2 0 −2

3 0
−v1 1 0 0
−1

3v1v2 v2 −2
3v1 0

 , G21 =
µ

ρ


0 0 0 0
−v2 0 1 0
2
3v1 −2

3 0 0
−1

3v1v2
2
3v2 v1 0

 ,

G22 =
µ

ρ


0 0 0 0
−v1 1 0 0
−4

3v2 0 4
3 0

−
(
v2

1 + 4
3v

2
2 + γ

Pr (E − v2)
) (

1− γ
Pr

)
v1

(
4
3 −

γ
Pr

)
v2

γ
Pr

 .

5.2 Finite element discretisation

Due to the fact, that we do not apply partial integration on the convective flux, we
derive the weak form considering only the viscous part. Therefore let us start from

− ∂

∂xk

(
Gkl(u)

∂u

∂xl

)
= 0 ∈ Ω ,

subject to proper boundary conditions that will be listed later.
Similarly as in Section 2.1 we rewrite (5.2) to a first order system

σ = G(u)∇u , −∇ · σ = 0 in Ω , (5.2)

i.e., σik = (G(u)kl)ij∂xiuj . Multiplying them by test functions φ and v, respectively,
integrating over Ω and using Green’s Theorem∫

Ω
σ : φ dx = −

∫
Ω

u∇ ·
(
GT (u)φ

)
dx +

∫
Γ

u(GT (u)φ) · n ds ,∫
Ω
σ : ∇v dx =

∫
Γ
σ · nv ds ,
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where we used the notation A : B =
∑

i,j AijBij for the matrix scalar product.1 To
go the discrete level we denote the approximate counterparts of all functions using the
subscript h.∫

Ω
σh : φ

h
dx = −

∫
Ω

uh∇ ·
(
GT (uh)φ

h

)
dx +

∫
Γ

ûh(GT (uh)φ
h
) · n ds , (5.3)∫

Ω
σh : ∇vh dx =

∫
Γ
σ̂h · nvh ds , (5.4)

where ûh and σ̂h are the numerical approximation of u and ∇u, respectively. Let us
apply Green’s Theorem for (5.3) and set φ

h
= ∇vh∫

Ω
σh : ∇vh dx =

∫
Ω
G(uh)∇uh : ∇vh dx +

∫
Γ
(ûh − uh)(GT (uh)∇vh) · n ds , (5.5)

Using the fact that the right hand sides of (5.4) and (5.5) are the same and considering
that the Dirichlet boundary conditions are imposed weakly according to [36] we can
obtain the following problem.

Problem Set 5.1. Seek uh ∈ V d
h,p such that

Nh(uh,vh) = 0 ∀vh ∈ V d
h,p . (5.6)

where

Nh(uh,vh) =

∫
Ω
∇ · Fc(u) · v dx +

∫
Ω
G(uh)∇uh : ∇vh dx

+

∫
Γ
(ûh − uh)(GT (uh)∇vh) · n ds+ α

∫
Γ
G(uh)(ûh − uh) · nv ds

−
∫

Γ
G(ûh)∇uh · nvh ds . (5.7)

Remark 5.2. As in the previous Chapters we will use streamline diffusion FEM, there-
fore the FEM basis function are modified in the way

ṽ = v + τ(Fc)′[u] · ∇v ,

where Fc denotes the convective (Euler) fluxes, and 5.6 is modified such that

Nh(uh, ṽh) = 0 ∀ṽh ∈ Ṽ d
h,p ,

but Nh(·, ·) is the same as in (5.7).

1This supposes that the size of A and B are the same, i.e., there exist n,m ∈ N such that A,B ∈ Rn×m.
The notation can be extended to the case when A ∈ Rn×m and B ∈ Rm×n by A : B =

∑
i,j AijBji.
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5.2.1 Boundary conditions

We have to keep in mind that our future aim is to determine the flow over an air-
foil. Therefore, there are farfield and wall boundary conditions. We will determine the
possible choices of the boundary flux ûh = uΓ(u).

• Farfield boundary conditions: we should distinguish between subsonic/supersonic
inflow and outflow. For more details we refer to [12].

• Wall boundary conditions: for the velocity we have no slip condition (v1 = v2 = 0)
and for the temperature we can have isothermal wall (T = Tw) or we can have
adiabatic wall (n · ∇T = 0). The corresponding boundary conditions are

– for the isothermal wall

uΓ(u) = (u1, 0, 0, u4)T ,

– for the adiabatic wall

uΓ(u) = (u1, 0, 0, u1cvTw)T .

5.3 Target functionals

If we consider to solve the flow equations over an airfoil then we can think about the
pressure at the leading edge or the lift/drag coefficients as possible target quantities.

Pressure at the leading edge

The corresponding target functional is

J(u) =

∫
Ω
p(u)ψx0 dx ,

where ψ is the mollified function that was introduced in Section 3.2.1, x0 denotes the
stagnation point. The pressure p can be computed using the total enthalpy H, which is
given by

H = E +
p

ρ
.

We have to emphasize that this target functionals is nonlinear.

Lift/drag coefficient

Lift and drag can be decomposed as pressure induced and viscous lift/drag. The corre-
sponding target functionals are

J(u) =
1

C∞

∫
ΓW

(p(u)n− τn)ψ ds ,
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where ΓW denotes the wall (airfiol), C∞ and ψ is defined by

C∞ =
1

2
γp∞M

2
∞l ,

ψd = (cos(α), sin(α))T ,

ψl = (− sin(α), cos(α))T ,

where subscripts d, l and∞ stands for drag, lift and free-stream, respectively, M denotes
the Mach number, l denotes the reference length.

We have to emphasize that these target functionals are also nonlinear, due to the
appearance on the pressure.

5.4 Error estimation

As we have seen earlier, see Remark 4.4, the prime of the nonlinear operator appears
twice in the computation, once it is used for the solution of the primal problem (in the
Newton iteration), once it is used for the dual problem.

Let us list this, using the notation ûh = uΓ(u) to clarify that boundary data could
also depend on u, therefore its derivative is nonzero. After some algebra the final form
is

N ′h[uh](wh, ṽh) =

∫
Ω
∇ · (Fc)′[u]wṽ dx +

∫
Ω
∇ · Fcṽ′w dx

+

∫
Ω
G′[uh]w∇uh : ∇ṽh dx +

∫
Ω
G[uh]∇w : ∇ṽh dx

+

∫
Γ

u′Γ[uh]wh(GT (uh)∇ṽh) · n ds+

∫
Γ
(uΓ(uh)− uh)(GT )′[uh]wh∇ṽh · n ds

+ α

∫
Γ
G′[uh]w(uΓ(uh)− uh) · nv ds+ α

∫
Γ
G(uh)u′Γ[uh]w · nṽ ds

−
∫

Γ
G′[uΓ(u)](u′Γ[u])w∇uh · nṽh ds . (5.8)

In addition, the prime of the target functional is also needed, but that is more easy
to compute, and with that the dual problem, as we have seen earlier, reads as follows:
find z̃h ∈ Ṽ q

h such that

Nh[uh](wh, z̃h) = J ′[uh](w) ∀wh ∈ V q
h .
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Chapter 6

Recommendations for future work

6.1 Conclusion

The main goal of this project was to extend the work of Stefano D’Angleo on adjoint
based goal oriented error estimation from convection problems to convection-diffusion
ones, using streamline upwind stabilised finite element methods. Analytically such a
problem is different from the inviscid problems in a way that boundary layer-type solu-
tions could appear. The main achievements are the followings.

Implementations in APOGEE

The code APOGEE was written by Stefano D’Angelo and it was originally dedicated for
problems that includes only convective fluxes. For testing purposes the reaction and the
source terms, and as the main task of the project, the viscous flux were implemented
and tested for linear and nonlinear scalar problems and for linear coupled problems.

Error estimation for convection-diffusion problems

The error representing formula for the linear and the nonlinear cases have been presented.
Numerical results have been shown for the linear and nonlinear boundary layer problems,
and for linear coupled systems. It has been shown, that the adjoint based error estimation
can determine the target quantity in the presence of boundary layers using less unknowns
than the residual based estimators.

Adjoint consistency

The convergence of the target quantity can be guaranteed due to the convergence rate
of the primal problem. However, higher rates of convergence can be achieved using the
convergence rate of the adjoint (dual) problem. According to the theory of convergence
of FEM, the question of this convergence rate can be reduced to the question of the
convergence rate of the interpolation using the streamline upwind basis functions. It
was shown, that using the streamline upwind functions better convergence rates can be
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achieved for the adjoint problems than for the residual distribution or bubble stabilised
functions.

6.2 Future work

6.2.1 Possible modification in the stabilisation of the viscous term

As we have seen in Section 2.3 the stabilisation of the second order term is complicated,
but the advantage of this is the extra rates of convergence. This stabilisation is important
only if higher order discretisation is used (polynomials of degree ≥ 2). In this project
we used only first order discretisation for the primal and for one of the adjoint solution,
and used second order only for the reference adjoint solution, therefore we neglected the
stabilisation of the second order term.

However, there are some ways that can be implemented and tested.

Partial integration

One of them starts with the partial integration (2.3). Let us recall this in a reordered
form ∫

K
−ε4u(τb · (∇v)) 6=

∫
K
ε∇u∇(τb · (∇v)) .

The equality can be achieved if we include the boundary term∫
K
−ε4u(τb · (∇v)) =

∫
K
ε∇u∇(τb · (∇v))−

∫
∂K

ε∇u · n(τb · (∇v)) .

Therefore, if we could implement ∇(τb · (∇v)) then we could get rid of the approx-
imation ∇ṽ ≈ ∇v that was used for all cases. After doing some algebra with the new
terms they can be rearranged as jumps over the interior edges.

Naturally, it means that the corresponding bilinear form has to be changed. On the
discrete level the jumps have to be built into the bilinear form. It could be shown that
on the continuous level these jumps are disappearing, therefore the bilinear form can be
modified even on the continuous level.

Projection

As it was suggested by Mario Richiuto we can use some projection when adding the
stabilising term. To do this we have to work out the formula B(u, v) + ST (u, v) from
Section 2.3. Let us neglect the boundary conditions for the sake of simplicity and consider
the case without the reaction term

ε

∫
Ω
∇u · ∇v +

∫
∇ · (bu)v +

∑
K

∫
K

(−ε4u+∇ · (bu))(τb · (∇v)) . (6.1)
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Using that 4u = ∇ · (∇u) we can rewrite (6.1) as

ε

∫
Ω
∇u · ∇v dx +

∫
∇ · (bu)v dx +

∑
K

∫
K

(−ε∇ · w +∇ · (bu))(τb · (∇v)) dx , (6.2)

where w is the projection of ∇u in the sense that∫
Ω
vw dx =

∫
Ω
v∇u dx , (6.3)

for all test functions v. With this we can completely get rid of the term τb · (∇u).

Rewriting to a system

Using (6.2) and (6.3) we can rewrite the original equation (2.1) to a first order system
such as

−ε∇ · w +∇ · (bu) + cu = f , (6.4)

−∇u+ w = 0 . (6.5)

If we want to solve (6.4)-(6.5) using SUPG we do not have to deal with ∇ṽ due to
the fact that there is no second order term. However, some boundary conditions have
to be created for (6.5).

6.2.2 Meshes

Throughout this work (and also in the work of Stefano D’Angelo) only triangular meshes
have been used with straight edges. This should be generalized by curvilinear elements,
especially in the case of computing the flow over an airfoil.

Also quadrilateral meshes could be implemented, which are much more popular in
boundary layer computations. However, in this case some other complications will arise,
even if the quadrilaterals have straight edges. It is well known, that any two triangles
and parallelograms can be transformed into each other by an affine linear mapping, as it
was also mentioned in Section 2.2. Therefore, plenty on the computations can be done
on the reference triangle/parallelogram, such as computation of the basis function at the
quadrature points.

In the case of arbitrary quadrilaterals this property does not hold anymore, and the
corresponding transformation becomes nonlinear, which complicates the calculation.

Even mixed meshes could be used, in which there are quadrilateral elements along
the airfoil inside the boundary layer, and outside of that triangles are used. With such
a mesh some computational time can be saved in comparison to the full quadrilateral
meshes, although, the code becomes complicated as it has to deal with two different
types of elements at the same time.
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6.2.3 Extension of the modelled phenomenons

Naturally, the first extension will be to solve flow problems around an airfoil with the
target functional listed in Section 5.3. In the case of shocks some shock capturing
schemes have already been implemented in APOGEE by Stefano D’Angelo, therefore we
will have a wide range of possible flow conditions.

Also, it could be useful to include some turbulence modelling, as it was done in the
discontinuous Galerkin case in [22] where RANS-k − ω was used to model turbulence.
With this some more realistic simulations could be done.

Finally, there are other fields of CFD where the adjoint based approach is used: the
optimisation and the uncertainty quantification. We will try to connect these three ap-
proaches in a way that the same matrix should appear in all three problems with different
right hand sides. For example, when coupling the adjoint based error estimation with
the adjoint based optimisation, the aim could be to give new geometrical shapes while
guaranteeing that the flow equations (whether they are the Euler or the Navier Stokes
equations) are solved properly, i.e. the target with respect to what the optimisation is
done, is computed accurately.
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Mathematical supplement

A.1 Banach and Hilbert spaces

Let V be a real vector space.

Definition A.1. The mapping ‖ · ‖ : V → R≥0 is called a norm, if it satisfies the
following three conditions:

1. ‖v‖ = 0⇔ v = 0,

2. ‖λv‖ = |λ|‖v‖, ∀v ∈ V , ∀λ ∈ R,

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖, ∀v, w ∈ V (triangle inequality).

Definition A.2. The mapping ‖ ·‖∗ : V → R≥0 is called seminorm, if it satisfies 2. and
3. from the previous definition and

1.’ v = 0⇒ ‖v‖ = 0.

Definition A.3 (Equivalent norms). Let us have two norms on V ‖ · ‖1, and ‖ · ‖2. We
say that these two norms are equivalent if there exist M > m > 0 constants such that
∀v ∈ V :

m‖ · ‖1 ≤ ‖ · ‖2 ≤M‖ · ‖1.

Lemma A.4. If V is finite dimensional then any two norms are equivalent.

Definition A.5. The bilinear mapping 〈·, ·〉 : V × V → R is called an inner product (or
scalar product), if it satisfies the following three conditions:

1. 〈v, w〉 = 〈w, v〉, ∀v, w ∈ V (symmetry),

2. 〈v, v〉 ≥ 0, ∀v ∈ V (positivity),

3. 〈v, v〉 = 0⇔ v = 0.
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Remark A.6. Let 〈·, ·〉 be an inner product, then ‖v‖V := 〈v, v〉1/2 ∀v ∈ V defines a
norm on V .

Lemma A.7 (Cauchy-Schwartz inequality). ∀v, w ∈ V : | 〈v, w〉 | ≤ ‖v‖V ‖w‖V .

Definition A.8. A Hilbert space is an inner product space that is complete with the
norm defined by the inner product.

In the following α = (α1, . . . , αd) (where αi is a non-negative integer ∀i = 1, . . . , d)
will denote a multi-index, and for a function with d variable ∂αv := ∂α1

1 . . . ∂αd
d v. The

absolute value of α is defined as |α| := α1 + · · ·+ αd.

Throughout this report we have used the following function spaces (Ω ⊂ Rd in every
case).

• Lp(Ω) := {v : Ω→ R :
∫

Ω |v|p <∞}, 1 ≤ p ≤ ∞.

• L∞(Ω) := {v : Ω→ R : inf{supN⊂Ω,meas(N)=0 |v|} <∞}, 1 ≤ p ≤ ∞.

• Wm,p(Ω) := {v : Ω→ R : (∂αv) ∈ Lp(Ω),∀α : |α| ≤ m}

• Hm(Ω) := Wm,2(Ω)

With the following notations for norms and seminorms:

• ‖u‖20,T := ‖u‖2L2(T ) =
∫
T |u|2,

• ‖u‖2m,T := ‖u‖2Hm(T ) =
∑
|α|≤m

∫
T |∂αu|2,

• |u|2k,T :=
∑
|α|=k

∫
T |∂αu|2,

where α is a multi-index and T is an arbitrary domain of integration. We can omit the
second subscript if the integration domain is Ω (i.e. ‖u‖20 := ‖u‖20,Ω).

The fractional Hilbert space H1/2(∂Ω) was used when we worked with Dirichlet
boundary condition. This space can be characterized as follows.

Definition A.9.

H1/2(∂Ω) :=

{
u ∈ L2(∂Ω);

u(x)− u(y)

|x− y| 1+d
2

∈ L2(∂Ω× ∂Ω)

}
.

Remark A.10. H1/2(∂Ω) can be defined using trace operators: H1/2(∂Ω) := {u ∈
L2(∂Ω) : u = U |∂Ω (in trace sence) for some U ∈ H1(Ω)}. For more details see [35,
p.58].
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A.2 Proof of convergence of FEM

Suppose that we have a continuous problem, which means that we seek for u ∈ V∗ such
that ∀v ∈ Ṽ

B(u, v) = F (v) , (A.1)

where B(·, ·) is a bilinear form defined over V∗× Ṽ and F (·) is a linear form defined over
Ṽ . To clarify why we have the notation V∗ see Remark A.15.

Let us denote by Vh a finite dimensional subspace of V∗. With this the discrete
counterpart of (A.1) reads as follows: we seek for uh ∈ Vh such that ∀v ∈ Ṽ

B(uh, v) = F (v) , (A.2)

where B(·, ·) and F (·) are the same as above.
Let us modify the Definition 2.5 a little bit, to fit it to our framework.

Definition A.11. Suppose that the bilinear form B(·, ·) is defined over V∗ × Ṽ . Let us
denote by |||·|||∗ a norm on V∗ and by |||·|||t a norm on Ṽ .

• The bilinear form is continuous on V∗ × Ṽ , if there exists Cc > 0 such that
B(u, v) ≤ Cc |||u|||∗ |||v|||t, ∀u ∈ V v ∈ Ṽ .

• The bilinear form is coercive on Ṽ × Ṽ , if there exists Cs > 0 such that B(v, v) ≥
Cs |||ṽ|||2t , ∀v ∈ Ṽ .

The main goal of this subsection is to estimate the discretisation error, i.e. the dis-
tance between the exact solution u and the discrete one uh.

Lemma A.12. We have that

B(u− uh, v) = 0, ∀v ∈ Ṽ ,

which means that the discretisation error is orthogonal to the finite element space.

Proof. According to (A.1) we have: B(u, v) = F (v) ∀v ∈ Ṽ . On the other hand A.2
means B(uh, v) = F (v) ∀v ∈ Ṽ . Subtracting the two equations we get the desired
statement.

Remark A.13. The above property is called Galerkin orthogonality. If equation (A.12)
holds the finite element method is called consistent.

We will develop the basics of (almost) all a-priori error estimations using the following
three conditions:

• B(·, ·) is coercive,

• B(·, ·) is bounded,
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• B(·, ·) possesses the Galerkin orthogonality.

We will show, that the magnitude of the discretisation error |||u− uh||| is the same as
the interpolation error |||u− uI ||| where uI is the interpolant of u. To this, we will bound
the difference between the numerical solution and the interpolant

|||uI − uh|||∗ ≤ C |||u− uI |||∗ .

With this we can reduce the question to the accuracy of the interpolation thanks to
the triangle inequality

|||u− uh|||∗ ≤ |||u− uI |||∗ + |||uh − uI |||∗ ≤ (1 + C) |||uh − uI |||∗ .

Consequently, the magnitude of the discretisation error is the same as the magnitude
of the interpolation error, i.e. if we can approximate an arbitrary function from the
function space V∗ with a certain convergence rate, then the convergence rate of the
corresponding FEM will be the same as the convergence rate of the approximation.

Lemma A.14. Suppose that the bilinear form is coercive, bounded and the FEM is
consistent. In this case

|||uI − uh|||∗ ≤ C |||u− uI |||∗ .

Proof. Using the three assumptions we have

Cc |||uI − uh|||2t ≤ B(uI − uh, uI − uh) (coercivity)

= B(uI − uh, uI − uh)−B(u− uh, uI − uh) (Galerkin orthogonality)

= B(uI − u, uI − uh) ≤ Cb |||uI − u|||∗ |||uI − uh|||t . (boundedness)

If |||uI − uh|||t = 0 then the interpolant and the discrete solution are the same and the
proof is complete, therefore the discretisation error is equal to the approximation error.
Otherwise we can divide by Cc |||uI − uh|||t and we get

|||uI − uh|||t ≤
Cb
Cc
|||uI − u|||∗ .

To complete the proof we have to assume that the norms |||·|||∗ and |||·|||t are equivalent
on Ṽ , see Definition A.3, which implies

m |||uI − uh|||∗ ≤ |||uI − uh|||t .

The easiest case is when the two norms are the same.

For some comments on the approximation results see Appendix A.2.1.
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Remark A.15. We used to notation V∗ at the beginning of this section which could
seem to be strange. For concrete examples the analytical solution usually belong to some
Sobolev space W . However, we can construct a FEM in which the discrete solution
belongs to Vh 6⊂ W , in this case the method is called non-conforming. To be able to
prove the convergence, we have to introduce the space V∗ = W + Vh, where + stands for
the usual Minkowski sum. With this notation we have that W and Vh are both a subset
of V∗.

Remark A.16. It can be seen from the proof, that Cc (the constant from the coercivity)
appears in the denominator, therefore if it is small then the constant in the convergence
is significant and numerically a very dense mesh is required to achieve the proper con-
vergence rate. The case when Cc is small is called coercivity loss, see Section 3.5 of [16].
This can arise in many physical phenomenons, one of them is the convection dominated
convection-diffusion problem, due to the fact that Cc is proportional to ε/|b‖, therefore
it is small when ε� |b|.

Numerically that is why the cell Peclet number plays an important role. It weights
the Cc with the mesh size, therefore gives an indicator whether the mesh is good enough
or not. That is why we had the two asymptotic requirements (2.15) and (2.16) on τh.

To check the corresponding properties of the bilinear form it can be said that con-
tinuity is usually an easy task, on the other hand, coercivity is always challenging. For
example, let us recall the corresponding materials for the linear diffusion-advection-
reaction problem, so let us have the following partial differential equation

−ε4u+∇ · (bu) + cu = f in Ω ,

subject to proper boundary conditions. For details on the different coefficients, see
Chapter 2.

The corresponding norms are

|||u|||2∗ = |||u|||2t = ε|v|21 +
∑
T∈Th

(
τT ‖b · ∇u‖20,T + ω‖v‖20,T

)
. (A.3)

Set cT = maxx∈T |c(x)| for each T ∈ Th and let the constant ω satisfy

c− 1

2
∇ · b ≥ ω > 0 .

The local inverse inequality ensures that there is a constant νinv that is independent
on the mesh, with wich we have the following inequality

‖4vh‖0,T ≤ νinvh−1|vh|1,T ,

for every vh ∈ Vh.

Using these notations we can prove the following Lemma. For the proof we refer to
Lemma 4.16 [39].
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Lemma A.17. Let the parameter τh satisfy the inequality

0 < τh ≤
1

2
min

{
ω

c2
T

,
h2
T

ενinv

}
,

for each T ∈ Th. Then the SUPG bilinear form defined in Section 2.3 is coercive, i.e.,

B(v, v) ≥ 1

2
|||v|||2t ∀v ∈ Ṽ .

If instead of a bilinear form we have to deal with a semilinear form, then some steps
of the proof have to be changed. We loose the equality

B(uI − uh, uI − uh)−B(u− uh, uI − uh) = B(uI − u, uI − uh) ,

however, we have to emphasize that the final aim was to bound the term with

C |||uI − u|||∗ |||uI − uh|||t .

This can be achieved without the linearity if the semilinear form is Lipschitz continuous
in its first argument, i.e. there exists a constant CL > 0 such that

|B(u1, v)−B(u2, v)| ≤ CL |||u1 − u2|||∗ |||v|||t .

If this holds, then we have

|B(uI − uh, uI − uh)−B(u− uh, uI − uh)| ≤ CL |||uI − uh − (u− uh|||∗ |||uI − uh|||t ,

that completes the equality of the above proof. However, Lipschitz continuity can mostly
be proved for problems where nonliearity appears in the diffusion term, such as for non-
Newtonian flows, see i.e. [26].

A.2.1 Polynomial approximation in Hilbert spaces

Definition A.18. The mesh Th = {Ei, i = 1, . . . , Nel} (Ei is a triangle for all i =
1, . . . , Nel) is called shape regular if there exists a constant c0 such that

hi ≤ c0ρi,

holds ∀i = 1, 2, . . . , N , where hi is the diameter and ρi is the radius of the inner circle
of Ei.

In the following we always suppose that the mesh is shape regular.

Throughout the previous section we have seen that one of the key ingredients in the
convergence proof is the approximation of a given function using polynomials of degree
p.
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Let us denote by uI the interpolant of u ∈ H l+1(Ω) (1 ≤ l ≤ p) that can be calculated
using Lagrange elements of degree p for the interpolation. Then for all u ∈ H l+1(Ω)
(1 ≤ l ≤ p) we have

‖u− uI‖0 + h|u− uI |1 ≤ chl+1|u|l+1.

For the proof see i.e. [16, Sect. 1.5.1].

If we are using the SUPG norm defined by (A.3), after some calculations, see [39],
we have

|||u− uI |||∗ ≤ c(h1/2 + ε1/2)hp|u|p+1 ,

and for the convection dominated case

‖u− uI‖ ≤ chp+1/2|u|p+1 ,

A.2.2 Additional comments on the choice of τ

In Lemma A.17 is was stated the τ should be bounded from above to guarantee consis-
tency and therefore convergence. In Section 2.3.1 it was mentioned that the parameter
τ has to depend on the local Peclet number through the function ζ for which we had
two asymptotic requirements

ζ(Peh)→ 1 as Peh →∞ ,

ζ ≈ Peh as Peh → 0 .

There are plenty of possibilities for ζ, in Table A.1 we list the most popular ones and
some of them are plotted in Figure A.1.

ζ(Peh) name and corresponding article

coth(Peh)− 1/Peh optimal [11]

min{1, P eh/3} doubly asymptotic [28]

Peh/(1 + Peh) Mizukami [3]

max{0, 1− 1/Peh} critical [11]

max{0, 1− 1/(2Peh)} Johnson [31]

(Peh/3)
[
1 + (Peh/3)2

]−1/2
Hughes [27], Tezduyar [45]

Peh(1 + (Peh)2)−1/2 Tezduyar [32]

Table A.1: Possible choices of the function ζ.
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Figure A.1: Possible choices of the function ζ. Solid line: optimal, dashed line:
doubly asymptotic, dotted line: critical, ♦: Mizukami, ◦ Hughes-Tezduyar

A.3 Weakly imposing the Dirichlet boundary conditions
for second order problems

We have seen in Section 2.1 how to get from the PDE to the weak form. From the
calculation it is clear that the natural type of boundary conditions is the Neumann one,
it can be implemented into the weak form quite easily. However, Dirichlet boundary
conditions can cause some difficulties.

They do not appear naturally in the weak form. In most papers and textbooks they
are implemented strongly which means that the bilinear form is restricted to H1

ΓD
×H1

0 ,
where

H1
ΓD

(Ω) = {u ∈ H1(Ω) : u|ΓD
= g} ,

H1
0 (Ω) = {u ∈ H1(Ω) : u|ΓD

= 0} ,

therefore the solution is approximated on the subspace of H1(Ω) that contains function
that are satisfying the Dirichlet condition. This is exactly why we had the condition
that gD ∈ H1/2(Γ), otherwise it would not be guaranteed that the boundary condition
could be satisfied.

On the other hand, this would complicate the target based error estimation, because
to achieve adjoint consistency we should look for the solution in two different subspace
of H1(Ω) for the primal and dual problems.

For first order PDEs the weakly imposing is almost natural. All we have to do is to
apply Green’s Theorem twice and distinguish between the inflow and outflow boundary.
For more details see i.e. [12].

The first idea of weakly imposing the Dirichlet boundary conditions for second order
problems can be related to Nitsche [36]. He suggested to modify the Dirichlet boundary
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conditions artificially. Let us recall the formulas and the notations from Section 2.1

u = gD on ΓD =⇒ u+ α−1ε∇u · n = gD on ΓD ,

where α is a parameter. If we want to insert this into the weak form we can use the fact
that ε∇u · n = α(gD − u). Using this we have∫

ΓD

ε∇uv · n ds =

∫
ΓD

α(gD − u)v . (A.4)

In [36] it was proved, that if α is scaled properly, the solution of the problem with
the artificial Robin boundary condition converge to u with optimal order.

This idea can also be find in the Interior Penalty Discontinuous Galerkin methods,
where the Dirichlet boundary conditions are imposed weakly by definition and the diffe-
rence between the prescribed and the numerical boundary condition is penalised by the
same factor as in (A.4).

This idea was later modified [19], where they showed that the convergence in a special
norm remains optimal for arbitrary α if (A.4) is taken into account with opposite sign.

A.4 Governing Euler equations

The following section is taken from [12] and it is listed only to give a full description of
the Euler fluxes.

The stationary case of the 2D compressible Euler problem is given by

∇ · Fc(u) = 0 in Ω,

where in a two-dimensional space, the flux vector Fc(u) = (f c1(u), f c2(u))T and the state
vector, u, in conservative variables, are defined as

u =


ρ
ρv1

ρv2

ρE

 , f c1(u) =


ρv1

ρv2
1 + p
ρv1v2

ρHv1

 and f c2(u) =


ρv2

ρv1v2

ρv2
2 + p
ρHv2

 ,
with ρ is the density of the fluid, v = (v1, v2) the flow speed and E is the total energy
for unit volume, and where H, the total enthalpy, is given by

H = E +
p

ρ
= e+

1

2
v2 +

p

ρ
,

with v2 = v2
1 + v2

2 and the pressure p is determined by the state equation of an ideal gas
as

p = (γ − 1)ρe,
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with γ = cp/cv the ratio of specific heat capacities at constant pressure, cp, and constant

volume, cv. The flux Jacobians, Aci (u) =
∂fci (u)
∂u are defined by

Ac1(u) =


0 1 0 0

−v2
1 + 1

2(γ − 1)v2 (3− γ)v1 −(γ − 1)v2 γ − 1
−v1v2 v2 v1 0

v1(1
2(γ − 1)v2 −H) H − (γ − 1)v2

1 −(γ − 1)v1v2 γv1

 ,

Ac2(u) =


0 0 1 0

−v1v2 v2 v1 0
−v2

2 + 1
2(γ − 1)v2 −(γ − 1)v1 (3− γ)v2 γ − 1

v2(1
2(γ − 1)v2 −H) −(γ − 1)v1v2 H − (γ − 1)v2

2 γv2

 .
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Additional numerical results

B.1 Linear scalar problems

Let us recall the equation (3.9) and (3.10)

−0.014u− ∂xu− ∂yu = 0 in (0, 1)2 (B.1)

u = g on ∂(0, 1)2 (B.2)

where g is set such that the exact solution is

u(x, y) =
exp(−x/ε)− exp(−1/ε)

1− exp(−1/ε)
.

Let us consider the boundary flux functional as we did for the Burgers’ case,so let
us compute the weighted integral of the viscous flux at x = 0, with the weight function
ψ that is nonzero only on y ∈ [0.5, 1]. This function can be seen in Figure 4.3 and its
analytical expression is given in (4.22).

The target can be formalised as

J(u) =

∫
Γ0

ψε∇u · n ds = 0.349193469543138 ,

where Γ0 stand for the boundary x = 0. The results can be seen in Tables B.1 and
B.1 and the final meshes in Figure B.1. Again, we can conclude that the adjoint based
approach refines only where it is needed, in the vicinity of the support of ψ, however,
the residual based resolves the whole boundary layer.

B.1.1 Numerical example with reaction term and source

Another example has been studied in which we had both reaction flux and source term

−0.0014u− ∂xu− ∂yu+ u = f in (0, 1)2 (B.3)

u = g on ∂(0, 1)2 (B.4)

61



62 Additional numerical results

NT NLS |J(u)− J(uh)| |RΩ| θ1 R|Ω| θ2

1473 2816 2.529 · 10−1 1.429 · 100 5.65 6.043 · 100 23.89
1682 3208 1.732 · 10−1 1.140 · 100 6.58 2.707 · 100 15.63
2010 3828 9.981 · 10−2 6.905 · 10−1 6.92 1.811 · 100 18.15
2468 4689 5.385 · 10−2 3.213 · 10−1 5.97 2.913 · 100 54.10
2898 5450 4.047 · 10−2 2.237 · 10−1 5.53 2.949 · 100 72.86
3161 5961 4.006 · 10−2 1.975 · 10−1 4.93 2.967 · 100 74.06
3321 6275 3.979 · 10−2 1.956 · 10−1 4.92 2.975 · 100 74.77
3454 6538 3.958 · 10−2 1.938 · 10−1 4.90 2.980 · 100 75.29
3549 6728 3.964 · 10−2 1.945 · 10−1 4.91 2.989 · 100 75.41
3621 6873 3.956 · 10−2 1.935 · 10−1 4.89 2.992 · 100 75.62

Table B.1: Type I (adjoint based) estimation for boundary viscous flux. Test
equation (B.1) - (B.2).

NT NLS |J(u)− J(uh)| R θ

1473 2816 2.529 · 10−1 2.450 · 100 9.69
1674 3181 1.724 · 10−1 2.001 · 100 11.60
2009 3782 9.928 · 10−2 1.875 · 100 18.88
2517 4676 5.827 · 10−2 1.865 · 100 32.00
3118 5860 4.905 · 10−2 1.840 · 100 37.52
3888 7302 4.398 · 10−2 1.837 · 100 41.77
4654 8679 4.002 · 10−2 1.846 · 100 46.12
5334 10034 3.946 · 10−2 1.843 · 100 46.71
5675 10712 3.942 · 10−2 1.841 · 100 46.71
5857 11074 3.947 · 10−2 1.840 · 100 46.63

Table B.2: Type II (residual based) estimation for boundary viscous flux. Test
equation (B.1) - (B.2).

where f and g are set such that the exact solution is

u(x, y) = sin(2πx) sin(2πy) .

The first target functional was

J1(u) =

∫
Ω

sin(πx) sin(πy)u dx = 0 ,

The second target functional was

J2(u) =

∫
Ω
ψx0u dx = 0 ,
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where ψx0 is the mollified functional for the point evaluation, and the point of interest
is x0 = (0.5, 0.5).

It is possible to check whether the adjoint consistency holds or not. To do this, a
full mesh refinement is done and the primal convergence rates and the target functional
convergence rates are computed and compared. Let us consider the problem (B.3)-(B.4)
and the above described two different target functionals J1 and J2. The result can be
seen in Table B.3.

NT NLS ‖u− uh‖ rate |J1(u)− J1(uh)| rate |J2(u)− J2(uh)| rate

385 704 0.011889 1.386 · 10−3 5.931 · 10−3

1473 2816 0.005074 1.23 3.493 · 10−4 1.99 2.349 · 10−3 2.62
5761 11264 0.001481 1.78 5.130 · 10−5 2.76 1.895 · 10−3 3.92

22785 45056 0.000412 1.85 1.693 · 10−6 4.90 3.752 · 10−4 4.06

Table B.3: Convergence rates for the primal problem and for the target functional
in the linear case with mean value functional and point value functional.

From Table B.3 it can be seen, that the convergence in the target quantity is twice
as high as for the primal problem, therefore both of the above problems are adjoint
consistent.
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Figure B.1: Meshes for linear boundary viscous flux. Left: adjoint based refined
mesh with 3621 triangles (6873 unknowns) |J(u) − J(uh)| = 3.956 · 10−2, right:
residual based refined mesh with 5857 triangles (11074 unknowns) |J(u)−J(uh)| =
3.947 · 10−2.
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B.2 Nonlinear scalar problem

Let us recall the corresponding equation

−ε4u+∇ ·
(
u2

2
, u

)T
= 0 in (0, 1)2 , (B.5)

u = gD on ∂(0, 1)2 , (B.6)

where gD is set to have the following solution

u(x, y) = −2ενε tanh(νεx)

The target functional is the point value inside the boundary layer

J(u) =

∫
Ω
ψx0u dx = 0 ,

where again ψx0 is the mollified function and x0 = (0.01, 0.5). The corresponding result
can be found in Table B.5 and B.5, and the final meshes can be seen in Figure B.2.

NT NLS |J2(u)− J2(uh)| |RΩ| θ1 R|Ω| θ2

385 704 2.799 · 10−1 3.229 · 100 11.54 4.965 · 100 17.74
464 842 1.671 · 10−1 2.727 · 10−1 1.63 4.588 · 10−1 2.75
565 1026 7.684 · 10−2 1.705 · 10−1 2.22 2.135 · 10−1 2.78
695 1272 1.395 · 10−2 2.788 · 10−1 19.99 3.482 · 10−1 24.96
856 1568 6.987 · 10−3 1.189 · 10−1 17.02 1.265 · 10−1 18.10

1033 1901 5.181 · 10−3 1.149 · 10−1 22.17 1.199 · 10−1 23.14
1229 2282 3.985 · 10−3 1.126 · 10−1 28.26 1.158 · 10−1 29.06
1479 2773 2.676 · 10−3 1.116 · 10−1 41.73 1.134 · 10−1 42.36
1709 3221 2.242 · 10−3 1.105 · 10−1 49.30 1.116 · 10−1 49.80
1967 3725 1.958 · 10−3 1.101 · 10−1 56.22 1.107 · 10−1 56.55

Table B.4: Type I (adjoint based) estimation for the Burgers’ point values. Test
equation (B.5) - (B.6).
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NT NLS |J2(u)− J2(uh)| R θ

385 704 2.799 · 10−1 1.696 · 100 6.06
448 809 1.676 · 10−1 1.230 · 100 7.34
581 1042 4.605 · 10−2 1.006 · 100 21.85
749 1363 1.735 · 10−2 9.787 · 10−1 56.39

1034 1894 1.302 · 10−2 9.772 · 10−1 75.03
1307 2418 4.940 · 10−3 9.656 · 10−1 195.45
1676 3152 6.038 · 10−3 9.607 · 10−1 159.11
2196 4173 2.235 · 10−3 9.599 · 10−1 429.52
2833 5430 1.970 · 10−3 9.556 · 10−1 484.98

Table B.5: Type II (residual based) estimation for the Burgers’ point values. Test
equation (B.5) - (B.6).
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Figure B.2: Meshes for the point value for Burgers’ equation. Left: adjoint based
refined mesh with 1967 triangles (3725 unknowns) |J(u) − J(uh)| = 1.958 · 10−3,
right: residual based refined mesh with 2833 triangles (5430 unknowns) |J(u) −
J(uh)| = 1.970 · 10−3.
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Appendix C

Interpolation with the stabilised
basis functions

C.1 Convergence of the adjoint problem

It was shown in Appendix A.2 that the question of the convergence rate of any finite
element method can be reduced to the question of the interpolation rate. Furthermore,
we have seen the convergence results for the primal problem in Section 2.3.2. The adjoint
problem means that we want to approximate the adjoint solution by the modified test
functions. We will show, that for streamline upwind test functions this rate is the same
as for the primal problem, i.e. r = r̄ in Theorem 3.5, while this is not the case for
Residual Distribution Low-Diffusion A and Bubble stabilised FEM.

An interpolation will be presented for the streamline upwind test functions, that
can interpolate any polynomials of degree p exactly, therefore, due to the Bramble-
Hilbert Lemma C.5 the convergence rate of this interpolation in the L2 norm is p + 1,
however, the SUPG method is quasioptimal, therefore the convergence rate is less than
the interpolation rate by 1/2.

It will be shown, that for Residual Distribution Low-Diffusion A and for Bubble
stabilised FEM the convergence rate of the interpolation is 1 for any p, therefore the
adjoint convergence rate is r̄ = 1/2.

C.2 Streamline Upwind functions

Let us start with the following lemma. Suppose that the SUPG stabilisation constant τ
and the convection speed is constant.

Lemma C.1. Every polynomial u of degree p can be decomposed into u = g+ τbg′, with
some polynomial g.
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Proof. The following construction of g satisfies the statement of the lemma

g = u− τbu′ + (τb)2u′′ − (τb)3u′′′ + . . . (−1)p(τb)pu(p) =

p∑
i=0

(−1)i(τb)iu(i) . (C.1)

In this case the expression for τbg′ is

τbg′ = τbu′ − (τb)2u′′ + (τb)3u′′′ + . . . (−1)p(τb)p+1u(p+1) =

p+1∑
i=1

(−1)i−1(τb)iu(i) .

(C.2)

It is important to emphasise that u is a polynomial of degree p, hence u(p+1) ≡ 0.
Therefore, if we sum up (C.1) and (C.2) than we get back u.

After this, we can construct the interpolation for arbitrary p. Let us denote by f the
function we want to interpolate. On one element we can compute an auxiliary function
g as it was done for polynomials in (C.1) and interpolate it with the standard FEM basis
functions using the Lagrangian interpolation, which means that the coefficients of the
FEM basis functions will be the exact value of the function f - pointwise interpolation.

This means that the interpolation of g is a linear combination of the FEM functions
vi with weight ci. Let us denote the interpolant by gI

gI =
∑

civi . (C.3)

The interpolation of f with the streamline upwind functions will have the same weight,
therefore, using the notation fI the interpolant

fI =
∑

ciṽi .

Due to Lemma C.1 this interpolation is exact for polynomials of degree p (or less).
All we have to show, that this interpolation can be done locally, which means, that

the interpolation on two neighbouring elements provide the same coefficient for the basis
function that is common for the two elements. If τb is constant, than (C.1) gives the
same value on the common node for two neighbouring elements, therefore the coefficient
in C.3 will be the same on the two elements, which guarantee that the interpolation is
local.

Remark C.2. The procedure can be extended to two dimensional problems, the only
requirement is that τb has to be a constant. In the 2D case it can be proved that every
polynomial u of degree p can be decomposed into u = g + τb1∂xg + τb2∂yg, with some
polynomial g, and the construction from the proof creates two summations, one for the
partial derivatives with respect to x, and one for the partial derivatives with respect to y.

Therefore, using Bramble-Hilbert Lemma it can be proved, using standard FEM
argumentations, that the convergence rate of the interpolation is p+ 1, and, due to the
suboptimality of SUPG, the adjoint convergence rate is r̄ = p+ 1/2.
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In the literature, see [44], similar results are well-known, but using a significantly
different approach. Usually ṽ is not used, and the bilinear form is modified in a way,
that the terms that contain Ladvv are added to the standard bilinear form. In that case,
that adjoint convergence rate means that

‖z − zh‖ ≤ Chp+1/2|u|k+1

has to be proved, where z is the exact solution of the adjoint problem, zh is the discrete
solution, using the standard FEM functions, but the modified bilinear form.

In our case, the bilinear form is fixed, but the adjoint problem is solved on the space
Ṽh, therefore

‖z − z̃h‖ ≤ Chp+1/2|u|k+1

has to be proved, where z̃h is the discrete solution, using the streamline upwind basis
functions and the standard bilinear form, and this was not done before.

C.3 RD-LDA functions

In the case of Residual Distribution-Low Diffusion A in [12] the convergence rate of
the adjoint problem was 1/2 for every polynomial degree. It is easy to show that the
convergence rate cannot go over 1 for arbitrary polynomial degree. The reason behind
is that only the constant functions can be interpolated exactly.

Let us recall the definition of the basis functions

ṽRDA = α
k+∑
l k

+
l

, k = Ladvv , k+ = max{k, 0} , ,

where α is a parameter, Ladv is the advection part of the differential operator, v are the
standard FEM basis functions and the summation goes over all the basis functions that
are corresponding to the same physical element.

The fact that any constant functions can be interpolated exactly is the simple con-
sequence of ∑

l

ṽRDA = α
∑
l

k+∑
l k

+
l

= α ,

therefore if the constant is c, than the interpolation has the weight c/α for every basis
function.

Unfortunately, the interpolation for an arbitrary function is quite complicated, there-
fore it will be listed here only for p = 1, 2. Suppose that the coefficient α is equal to 1
and the convection speed is positive, b > 0, the case of the negative convection is similar
to the following. For simplicity, suppose that the mesh nodes are xi = i for i = 0, . . . , N .
The real case, when the mesh element has length h does not influence the algorithm, but
complicates the notations. The only difference is that all k (and therefore k+) functions
would be multiplied by h.
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When first order elements are used, than the basis functions on the first interval are

v0 = 1− x , v1 = x . (C.4)

From this we have

k0 = Ladvv0 = −b , k+
0 = 0 ,

k1 = Ladvv1 = b , k+
1 = b ,∑

k+ = b ,

which means that the RD basis functions are

ṽ0 = 0 , ṽ0 = 1 .

Therefore ṽ0 does not influence the approximation, and the coefficient of ṽ1 can be
set for example to the value of the interpolated function at the left endpoint of the
interval.

On the second interval the basis functions are similar to (C.4) but the functions are
shifted

v1 = 2− x , v1 = x− 1 ,

therefore, the corresponding k and k+ functions are the same, and the RD basis functions
are

ṽ1 = 0 , ṽ2 = 1 .

We have to emphasise that the coefficient of ṽ1 is already determined from the first
interval, however, it has no influence on the second one. Similarly as above the coefficient
of ṽ2 can be set for example to the value of the interpolated function at the left endpoint
of the interval.

In general the interpolation works as follows: the coefficient of ṽ0 has no effect, and
the coefficient of ṽi can be the value of the interpolated function at the left endpoint of
the ith interval. This will interpolate any constant exactly, but nothing more, therefore,
due to the Bramble-Hilbert Lemma the convergence rate is 1.

For second order elements the computations are more complicated. The basis func-
tions and the corresponding k functions are

v0 = (2x− 1)(x− 1) , k0 = b(4x− 3) ,

v1 = 4x(1− x) , k1 = b(4− 8x) ,

v2 = x(2x− 1) , k2 = b(4x− 1) .

The definitions of the k+ functions, and therefore the definitions of
∑
k+ and ṽ,

is different on the 4 subintervals: [0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]. The exact
expressions can be seen in the following tables.
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interval k+
0 k+

1 k+
2

∑
k+

[0, 1/4) 0 b(4− 8x) 0 b(4− 8x)
[1/4, 1/2) 0 b(4− 8x) b(4x− 1) b(3− 4x)
[1/2, 3/4) 0 0 b(4x− 1) b(4x− 1)

[3/4, 1] b(4x− 3) 0 b(4x− 1) b(8x− 4)

Table C.1: RD auxiliary functions.

interval ṽ0 ṽ1 ṽ2

[0, 1/4) 0 1 0

[1/4, 1/2) 0
4− 8x

3− 4x

4x− 1

3− 4x
[1/2, 3/4) 0 0 1

[3/4, 1]
4x− 3

8x− 4
0

4x− 1

8x− 4

Table C.2: RD basis functions.

It can be seen, that ṽi is a continuous rational function for all i, and to get any
polynomial approximation, their coefficient has to be the same1. On the other hand,
on the subintervals [0, 1/4) and [1/2, 3/4) only one test function is nonzero (ṽ1 and ṽ2,
respectively) and they are equal to 1. Therefore, the same situation is the same as in
the case of first order elements, the functions are constant, therefore the interpolation
rate is at most 1.

On the second interval the situation is similar to what we have for the first order
basis functions. The FEM functions are v2, v3, v4, their expression will not be listed here.
The corresponding k+ functions will be the same, and the coefficient of ṽ2 is already
determined. Similarly as above, due to the fact that the over some subintervals only two
functions will be nonzero, and they will be constant, the interpolation rate is at most 1.
Again, the coefficients of ṽ4 and ṽ5 can be the value of the interpolated function at the
left endpoint of the interval.

For higher order it can be shown that there will always be a subinterval where
only one k+ will be nonzero, therefore, only one ṽ will be nonzero, and it will be the
constant one. Therefore, for every polynomial degree there is a subinterval, over which
the interpolational polynomials are constants, therefore the convergence rate is at most
1.

For arbitrary polynomial degree, the interpolation goes as follows. On the first subin-
terval we can set all coefficients to be the value of the interpolated function at the left
endpoint of the interval, on the following subintervals only the previously not defined

1The degree of the dominator and the enumerator is the same, therefore for any linear combination
of them, the degree of the enumerator will be less than or equal to the degree of the dominator, therefore
it will not be a polynomial
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coefficient can be set similarly. The corresponding interpolation will be exact on the
constants, so for zero order polynomials, therefore the convergence rate of the interpo-
lation is 1. Similarly, as for SUPG, this will be reduced to 1/2 due to the upwinding.
This validates the corresponding results of [12].

no. elements ‖u− uRD‖0 rate

40 1.0000
80 0.6028 0.7302

160 0.3157 0.9331
320 0.1597 0.9832

Table C.3: Interpolation results using the Residual Distribution functions.

C.4 Bubble functions

Let us recall the definition of the bubble stabilised FEM basis functions.

ṽB = v + αb(x)

(
k+∑
l k

+
l

− v
)
, k = Ladvv , k+ = max{k, 0} , ,

where α is a parameter, Ladv is the advection part of the differential operator, v are
the standard FEM basis functions and the summation goes over all the basis functions
that are corresponding to the same physical element, b(x) is a bubble function on the
corresponding element, which means that b(x) = 0 on the boundary of the element, for
example b(x) =

∏3
i=1 vi(x).

Similarly as for RD-LDA, the terms k+/(
∑

l k
+
l ) are constants for p = 1, therefore,

the ṽB is going to be a polynomial. To get a certain interpolation rate, these polynomials
have to span the space P p up to a certain p, where P p contains all polynomials of degree
p. However, the span of the bubble basis function will contain P p only for p = 0.

When going to higher order, the situation is the same, because, as we have seen for
RD-LDA, over some subintervals the term k+/(

∑
l k

+
l ) will be constant, and over those

subintervals the span of the bubble functions will again contain P p, only for p = 0.

C.5 Bramble-Hilbert Lemma

Finally, let us recall the Bramble-Hilbert Lemma, and highlight the main steps of proving
the convergence rate of any local interpolation.

Lemma C.3. Let Ω be an arbitrary domain in R2, with Lipschitz continuous boundary,
or a bounded interval in R. Let p ∈ N, Φ : Hp+1(Ω) → R a linear functional, Φ(u) = 0
for all polynomials u of degree p, than

|Φ(u)| ≤ C|u|p+1 ∀u ∈ Hp+1(Ω) .
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This can be used to prove the convergence rate of the interpolation as follows. If
the interpolation is exact for polynomials of degree p, then Φ(u) = u − uI satisfies
the assumptions of the above lemma. We can apply it on the reference domain, see
Section 2.2, and from that we can apply the affine linear mapping to any triangle, and
the coefficient hp+1 will appear when computing the Hp+1 seminorm of the mapped
functional. The interpolation has to be local, to be able to use the affine linear mapping,
and get the right power of h. Therefore the global interpolation, that was mentioned for
SUPG is not useful in this case. For more details we refer to [16].
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