Journal papers
[11] J-U. Chen, T.L. Horvath and T. Bui-Thanh, A Divergence-Free and H(div)-Conforming Embedded-Hybridized DG Method for the Incompressible Resistive MHD equations, submitted, (2023) [preprint]
[10] K.L.A. Kirk, T.L. Horvath and S. Rhebergen, Analysis of an exactly mass conserving space-time hybridized discontinuous Galerkin method for the time-dependent Navier--Stokes equations, Mathematics of Computation, 92/340 (2023), pp 525-556 [article] [preprint]
[9] T.L. Horvath and S. Rhebergen, A conforming sliding mesh technique for an embedded-hybridized discontinuous Galerkin discretization for fluid-rigid body interaction (2022), Int. J. Numer. Meth. Fluids, 94/11 (2022), pp. 1784-1809 [article] [preprint]
[8] T.L. Horvath and S. Rhebergen, An exactly mass conserving space-time embedded-hybridized discontinuous Galerkin method for the Navier-Stokes equations on moving domains, J. Comp. Phys. 417 (2020) [article] [preprint]
[7] K.L.A. Kirk, T.L. Horvath, A. Cesmelioglu and S. Rhebergen, Analysis of a space-time hybridizable discontinuous Galerkin method for the advection-diffusion problem on time-dependent domains, SIAM J. Numer. Anal. 57-4 (2019), pp. 1677-1696. [article] [preprint]
[6] T.L. Horvath and S. Rhebergen, A locally conservative and energy-stable finite element method for the Navier-Stokes problem on time-dependent domains, Int. J. Numer. Meth. Fluids, 89/12 (2019), pp 519-532. [article] [preprint]
[5] T. L. Horvath: A note on reference solution based hp-adaptive PDE solvers, Miskolc Mathematical Notes, 2014, 15(1), 109-116. [article]
[4] T. L. Horvath, M. E. Mincsovics: Discrete maximum principles for interior penalty discontinuous Galerkin methods, Cent. Eur. J. Math., 2013, 11(4), 664-679. [article]
[3] T. L. Horvath, F. Izsak: Implicit a posteriori error estimation using patch recovery techniques, Cent. Eur. J. Math., 10(1), 2012, 55-72. [article]
[2] A. Csik, T. L. Horvath, P. Foldesi: An approximate Analytic Solution of the Inventory Balance Delay Differential Equation, Acta Technica Jaurinensis Series Logistica, (2010) 3 231-256. [article]
[1] T. L. Horvath, P. L. Simon: On the exact number of solutions of a singular boundary value problem, Differential and Integral Equations, Volume 22, Numbers 7-8, July/August p 787-796 2009. [article]
Book chapter
[1] M. E. Mincsovics, T. L. Horvath: On the differences of the discrete weak and strong maximum principles for elliptic operators, Lecture Notes in Computer Science, Springer 7116, 2012, 614-621. [chapter]
Thesis
[3] Horvath, T.: Adaptive Finite Element Methods for Elliptic Equations, PhD in Applied Mathematics, Eotvos University Budapest, 2014. [pdf]
[2] Horvath, T.: Adjoint Based Goal Oriented Error Estimation for Adaptive Petrov-Galerkin Finite Element Methods - Application to Convection-Diffusion Problems, Research Master, Von Karman Institute, 2014. [pdf]
[1] Horvath, T.: Exact Number of Solutionf of Nonlinear Boundary Value Problems, in Hungarian, MSc in Applied Mathematics, Eotvos University Budapest, 2008. [pdf]
Student research
[1] Horvath, T.: Exact Number of Solutions of a Boundary Value Problem Involving Singular Nonlinearity, in Hungarian, Eotvos University Budapest, Faculty of Science, Institute of Mathematics, 2007. 11. 30. [pdf]
Course notes
[6] H. Deconinck, T. de Mulder, T. L. Horvath: Introduction to finite volume and finite element methods for computational fluid dynamics, Introduction to Computational Fluid Dynamic, VKI Annual Lecture Series 2016.
[5] H. Deconinck, T. L. Horvath: Numerical Methods for Fluid Dynamics II, official VKI course Note CN227, 2016
[4] H. Deconinck, T. L. Horvath: Numerical Methods for Fluid Dynamics I, official VKI course Note CN226, 2015
[3] T. L. Horvath: Finite Element Methods - Introduction, in Hungarian, Eotvos University Budapest
[2] T. L. Horvath: Numerical Methods for Engineers, in Hungarian, Szechenyi University
[1] T. L. Horvath: Analysis and Differential Equations, examples, in Hungarian, Szechenyi University